R. D. Pietro, L. Mancini, A. Mei, A. Panconesi, J. Radhakrishnan
{"title":"可证明具有弹性的传感器网络","authors":"R. D. Pietro, L. Mancini, A. Mei, A. Panconesi, J. Radhakrishnan","doi":"10.1109/SECCOMW.2006.359569","DOIUrl":null,"url":null,"abstract":"We give, for the first time, a precise mathematical analysis of the connectivity and security properties of sensor networks that make use of the random pre-distribution of keys. We also show how to set the parameters - pool and key-ring size - in such a way that the network is not only connected with high probability via secure links, but also provably resilient, in the following sense: we formally show that any attacker that captures sensors at random with the aim of compromising a constant fraction of the secure links, must capture at least a constant fraction of the nodes of the network. In the context of wireless sensor networks where random pre-distribution of keys is employed, we are the first to provide a mathematically precise proof, with a clear indication of parameter choice, that two crucial properties connectivity via secure links and resilience against malicious attacks - can be obtained simultaneously. Our theoretical results are complemented by extensive simulations that reinforce our main conclusions","PeriodicalId":156828,"journal":{"name":"2006 Securecomm and Workshops","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Sensor Networks that Are Provably Resilient\",\"authors\":\"R. D. Pietro, L. Mancini, A. Mei, A. Panconesi, J. Radhakrishnan\",\"doi\":\"10.1109/SECCOMW.2006.359569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give, for the first time, a precise mathematical analysis of the connectivity and security properties of sensor networks that make use of the random pre-distribution of keys. We also show how to set the parameters - pool and key-ring size - in such a way that the network is not only connected with high probability via secure links, but also provably resilient, in the following sense: we formally show that any attacker that captures sensors at random with the aim of compromising a constant fraction of the secure links, must capture at least a constant fraction of the nodes of the network. In the context of wireless sensor networks where random pre-distribution of keys is employed, we are the first to provide a mathematically precise proof, with a clear indication of parameter choice, that two crucial properties connectivity via secure links and resilience against malicious attacks - can be obtained simultaneously. Our theoretical results are complemented by extensive simulations that reinforce our main conclusions\",\"PeriodicalId\":156828,\"journal\":{\"name\":\"2006 Securecomm and Workshops\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Securecomm and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECCOMW.2006.359569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Securecomm and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECCOMW.2006.359569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We give, for the first time, a precise mathematical analysis of the connectivity and security properties of sensor networks that make use of the random pre-distribution of keys. We also show how to set the parameters - pool and key-ring size - in such a way that the network is not only connected with high probability via secure links, but also provably resilient, in the following sense: we formally show that any attacker that captures sensors at random with the aim of compromising a constant fraction of the secure links, must capture at least a constant fraction of the nodes of the network. In the context of wireless sensor networks where random pre-distribution of keys is employed, we are the first to provide a mathematically precise proof, with a clear indication of parameter choice, that two crucial properties connectivity via secure links and resilience against malicious attacks - can be obtained simultaneously. Our theoretical results are complemented by extensive simulations that reinforce our main conclusions