基于自关注的生物医学IR复杂查询改写和自动文本分类的序列到集合语义标记

Manirupa Das, Juanxi Li, E. Fosler-Lussier, Simon M. Lin, S. Rust, Yungui Huang, R. Ramnath
{"title":"基于自关注的生物医学IR复杂查询改写和自动文本分类的序列到集合语义标记","authors":"Manirupa Das, Juanxi Li, E. Fosler-Lussier, Simon M. Lin, S. Rust, Yungui Huang, R. Ramnath","doi":"10.18653/v1/2020.bionlp-1.2","DOIUrl":null,"url":null,"abstract":"Novel contexts, comprising a set of terms referring to one or more concepts, may often arise in complex querying scenarios such as in evidence-based medicine (EBM) involving biomedical literature. These may not explicitly refer to entities or canonical concept forms occurring in a fact-based knowledge source, e.g. the UMLS ontology. Moreover, hidden associations between related concepts meaningful in the current context, may not exist within a single document, but across documents in the collection. Predicting semantic concept tags of documents can therefore serve to associate documents related in unseen contexts, or categorize them, in information filtering or retrieval scenarios. Thus, inspired by the success of sequence-to-sequence neural models, we develop a novel sequence-to-set framework with attention, for learning document representations in a unique unsupervised setting, using no human-annotated document labels or external knowledge resources and only corpus-derived term statistics to drive the training, that can effect term transfer within a corpus for semantically tagging a large collection of documents. Our sequence-to-set modeling approach to predict semantic tags, gives to the best of our knowledge, the state-of-the-art for both, an unsupervised query expansion (QE) task for the TREC CDS 2016 challenge dataset when evaluated on an Okapi BM25–based document retrieval system; and also over the MLTM system baseline baseline (Soleimani and Miller, 2016), for both supervised and semi-supervised multi-label prediction tasks on the del.icio.us and Ohsumed datasets. We make our code and data publicly available.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sequence-to-Set Semantic Tagging for Complex Query Reformulation and Automated Text Categorization in Biomedical IR using Self-Attention\",\"authors\":\"Manirupa Das, Juanxi Li, E. Fosler-Lussier, Simon M. Lin, S. Rust, Yungui Huang, R. Ramnath\",\"doi\":\"10.18653/v1/2020.bionlp-1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel contexts, comprising a set of terms referring to one or more concepts, may often arise in complex querying scenarios such as in evidence-based medicine (EBM) involving biomedical literature. These may not explicitly refer to entities or canonical concept forms occurring in a fact-based knowledge source, e.g. the UMLS ontology. Moreover, hidden associations between related concepts meaningful in the current context, may not exist within a single document, but across documents in the collection. Predicting semantic concept tags of documents can therefore serve to associate documents related in unseen contexts, or categorize them, in information filtering or retrieval scenarios. Thus, inspired by the success of sequence-to-sequence neural models, we develop a novel sequence-to-set framework with attention, for learning document representations in a unique unsupervised setting, using no human-annotated document labels or external knowledge resources and only corpus-derived term statistics to drive the training, that can effect term transfer within a corpus for semantically tagging a large collection of documents. Our sequence-to-set modeling approach to predict semantic tags, gives to the best of our knowledge, the state-of-the-art for both, an unsupervised query expansion (QE) task for the TREC CDS 2016 challenge dataset when evaluated on an Okapi BM25–based document retrieval system; and also over the MLTM system baseline baseline (Soleimani and Miller, 2016), for both supervised and semi-supervised multi-label prediction tasks on the del.icio.us and Ohsumed datasets. We make our code and data publicly available.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.bionlp-1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.bionlp-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在复杂的查询场景中,如涉及生物医学文献的循证医学(EBM)中,可能经常出现由一组涉及一个或多个概念的术语组成的新上下文。这些可能不会明确地引用实体或出现在基于事实的知识库中的规范概念形式,例如UMLS本体。此外,在当前上下文中有意义的相关概念之间的隐藏关联可能不存在于单个文档中,而是存在于集合中的多个文档中。因此,在信息过滤或检索场景中,预测文档的语义概念标签可以用于关联不可见上下文中相关的文档,或者对它们进行分类。因此,受序列到序列神经模型成功的启发,我们开发了一种新颖的关注序列到集合框架,用于在独特的无监督设置中学习文档表示,不使用人工注释的文档标签或外部知识资源,仅使用语料库派生的术语统计来驱动训练,这可以影响语料库内的术语迁移,从而对大量文档进行语义标记。在基于Okapi bm25的文档检索系统上评估TREC CDS 2016挑战数据集的无监督查询扩展(QE)任务时,我们的序列到集合建模方法给出了我们所知的最先进的预测语义标签的方法;以及MLTM系统基线基线(Soleimani和Miller, 2016),用于del.icio.us和Ohsumed数据集上的监督和半监督多标签预测任务。我们将代码和数据公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequence-to-Set Semantic Tagging for Complex Query Reformulation and Automated Text Categorization in Biomedical IR using Self-Attention
Novel contexts, comprising a set of terms referring to one or more concepts, may often arise in complex querying scenarios such as in evidence-based medicine (EBM) involving biomedical literature. These may not explicitly refer to entities or canonical concept forms occurring in a fact-based knowledge source, e.g. the UMLS ontology. Moreover, hidden associations between related concepts meaningful in the current context, may not exist within a single document, but across documents in the collection. Predicting semantic concept tags of documents can therefore serve to associate documents related in unseen contexts, or categorize them, in information filtering or retrieval scenarios. Thus, inspired by the success of sequence-to-sequence neural models, we develop a novel sequence-to-set framework with attention, for learning document representations in a unique unsupervised setting, using no human-annotated document labels or external knowledge resources and only corpus-derived term statistics to drive the training, that can effect term transfer within a corpus for semantically tagging a large collection of documents. Our sequence-to-set modeling approach to predict semantic tags, gives to the best of our knowledge, the state-of-the-art for both, an unsupervised query expansion (QE) task for the TREC CDS 2016 challenge dataset when evaluated on an Okapi BM25–based document retrieval system; and also over the MLTM system baseline baseline (Soleimani and Miller, 2016), for both supervised and semi-supervised multi-label prediction tasks on the del.icio.us and Ohsumed datasets. We make our code and data publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信