重命名的复杂性

Dan Alistarh, J. Aspnes, Seth Gilbert, R. Guerraoui
{"title":"重命名的复杂性","authors":"Dan Alistarh, J. Aspnes, Seth Gilbert, R. Guerraoui","doi":"10.1109/FOCS.2011.66","DOIUrl":null,"url":null,"abstract":"We study the complexity of renaming, a fundamental problem in distributed computing in which a set of processes need to pick distinct names from a given namespace. We prove an individual lower bound of \\Omega( k ) process steps for deterministic renaming into any namespace of size sub-exponential in k, where k is the number of participants. This bound is tight: it draws an exponential separation between deterministic and randomized solutions, and implies new tight bounds for deterministic fetch-and-increment registers, queues and stacks. The proof of the bound is interesting in its own right, for it relies on the first reduction from renaming to another fundamental problem in distributed computing: mutual exclusion. We complement our individual bound with a global lower bound of \\Omega( k \\log ( k / c ) ) on the total step complexity of renaming into a namespace of size ck, for any c \\geq 1. This applies to randomized algorithms against a strong adversary, and helps derive new global lower bounds for randomized approximate counter and fetch-and-increment implementations, all tight within logarithmic factors.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"The Complexity of Renaming\",\"authors\":\"Dan Alistarh, J. Aspnes, Seth Gilbert, R. Guerraoui\",\"doi\":\"10.1109/FOCS.2011.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the complexity of renaming, a fundamental problem in distributed computing in which a set of processes need to pick distinct names from a given namespace. We prove an individual lower bound of \\\\Omega( k ) process steps for deterministic renaming into any namespace of size sub-exponential in k, where k is the number of participants. This bound is tight: it draws an exponential separation between deterministic and randomized solutions, and implies new tight bounds for deterministic fetch-and-increment registers, queues and stacks. The proof of the bound is interesting in its own right, for it relies on the first reduction from renaming to another fundamental problem in distributed computing: mutual exclusion. We complement our individual bound with a global lower bound of \\\\Omega( k \\\\log ( k / c ) ) on the total step complexity of renaming into a namespace of size ck, for any c \\\\geq 1. This applies to randomized algorithms against a strong adversary, and helps derive new global lower bounds for randomized approximate counter and fetch-and-increment implementations, all tight within logarithmic factors.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

我们研究了重命名的复杂性,这是分布式计算中的一个基本问题,其中一组进程需要从给定的命名空间中选择不同的名称。我们证明了确定重命名为k中大小为次指数的任何命名空间的过程步骤的单个下界\Omega (k),其中k是参与者的数量。这个界限是紧密的:它在确定性和随机解决方案之间绘制了指数分隔,并为确定性的获取和增量寄存器、队列和堆栈暗示了新的紧密界限。边界的证明本身就很有趣,因为它依赖于从重命名到分布式计算中的另一个基本问题的第一个简化:互斥。对于任何c \geq 1,我们用一个全局下界\Omega (k \log (k / c))来补充我们的个体边界,它是重命名为大小为ck的命名空间的总步骤复杂度的下界。这适用于针对强大对手的随机算法,并有助于为随机近似计数器和获取和增量实现导出新的全局下界,所有这些都在对数因子范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Complexity of Renaming
We study the complexity of renaming, a fundamental problem in distributed computing in which a set of processes need to pick distinct names from a given namespace. We prove an individual lower bound of \Omega( k ) process steps for deterministic renaming into any namespace of size sub-exponential in k, where k is the number of participants. This bound is tight: it draws an exponential separation between deterministic and randomized solutions, and implies new tight bounds for deterministic fetch-and-increment registers, queues and stacks. The proof of the bound is interesting in its own right, for it relies on the first reduction from renaming to another fundamental problem in distributed computing: mutual exclusion. We complement our individual bound with a global lower bound of \Omega( k \log ( k / c ) ) on the total step complexity of renaming into a namespace of size ck, for any c \geq 1. This applies to randomized algorithms against a strong adversary, and helps derive new global lower bounds for randomized approximate counter and fetch-and-increment implementations, all tight within logarithmic factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信