Kammal Al-Kahwati, W. Birk, Evert Flygel Nilsfors, R. Nilsen
{"title":"基于数字孪生的带式输送机系统预测性维护解决方案的经验","authors":"Kammal Al-Kahwati, W. Birk, Evert Flygel Nilsfors, R. Nilsen","doi":"10.36001/phme.2022.v7i1.3355","DOIUrl":null,"url":null,"abstract":"Availability of belt conveyor systems is essential in production and logistic lines to safeguard production and delivery targets to customers. In this paper, experiences from commissioning, validation, and operation of an interactive predictive maintenance solution are reported. The solution and its development is formerly presented in Al-Kahwati et.al. (Al-Kahwati, Saari, Birk, & Atta, 2021), where the principles to derive a digital twin of a typical belt conveyor system comprising component-level degradation models,estimation schemes for the remaining useful life and the degradation rate, and vision-based hazardous object detection.\nFurthermore, the validation approach of modifying the belt conveyor and thus exploiting the idler misalignment load (IML) for the degradation predictions for individual components (including long-lasting ones) together with the actionable insights for the decision support is presented and assessed. Moreover, the approach to testing and validation of the object detection and its performance is assessed and presented in the same manner. An overall system assessment is then given and concludes the paper together with lessons learned.\nAs pilot site for the study a belt conveyor system at LKAB Narvik in northern Norway is used.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experiences of a Digital Twin Based Predictive Maintenance Solution for Belt Conveyor Systems\",\"authors\":\"Kammal Al-Kahwati, W. Birk, Evert Flygel Nilsfors, R. Nilsen\",\"doi\":\"10.36001/phme.2022.v7i1.3355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Availability of belt conveyor systems is essential in production and logistic lines to safeguard production and delivery targets to customers. In this paper, experiences from commissioning, validation, and operation of an interactive predictive maintenance solution are reported. The solution and its development is formerly presented in Al-Kahwati et.al. (Al-Kahwati, Saari, Birk, & Atta, 2021), where the principles to derive a digital twin of a typical belt conveyor system comprising component-level degradation models,estimation schemes for the remaining useful life and the degradation rate, and vision-based hazardous object detection.\\nFurthermore, the validation approach of modifying the belt conveyor and thus exploiting the idler misalignment load (IML) for the degradation predictions for individual components (including long-lasting ones) together with the actionable insights for the decision support is presented and assessed. Moreover, the approach to testing and validation of the object detection and its performance is assessed and presented in the same manner. An overall system assessment is then given and concludes the paper together with lessons learned.\\nAs pilot site for the study a belt conveyor system at LKAB Narvik in northern Norway is used.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experiences of a Digital Twin Based Predictive Maintenance Solution for Belt Conveyor Systems
Availability of belt conveyor systems is essential in production and logistic lines to safeguard production and delivery targets to customers. In this paper, experiences from commissioning, validation, and operation of an interactive predictive maintenance solution are reported. The solution and its development is formerly presented in Al-Kahwati et.al. (Al-Kahwati, Saari, Birk, & Atta, 2021), where the principles to derive a digital twin of a typical belt conveyor system comprising component-level degradation models,estimation schemes for the remaining useful life and the degradation rate, and vision-based hazardous object detection.
Furthermore, the validation approach of modifying the belt conveyor and thus exploiting the idler misalignment load (IML) for the degradation predictions for individual components (including long-lasting ones) together with the actionable insights for the decision support is presented and assessed. Moreover, the approach to testing and validation of the object detection and its performance is assessed and presented in the same manner. An overall system assessment is then given and concludes the paper together with lessons learned.
As pilot site for the study a belt conveyor system at LKAB Narvik in northern Norway is used.