语义相关抒情训练数据的微博启发智能子选择

Dylan Lasher, P. Bodily
{"title":"语义相关抒情训练数据的微博启发智能子选择","authors":"Dylan Lasher, P. Bodily","doi":"10.1109/IETC47856.2020.9249149","DOIUrl":null,"url":null,"abstract":"A current challenge in AI research is enabling AI systems to be inspired by external sources. We present a method for subselecting portions of a training corpus based on relevance to an external inspiring source. Our system takes an external, text-based inspiring source (e.g., tweet), extracts weighted lexical topics contained in the inspiring source, and uses these weighted topics to rank training instances in a corpus of song lyrics according to their relevance to the inspiring source. The system extends on the capabilities of the Empath framework by automatically generating domain-specific categories and mapping functions. The system offers a novel approach toward improved lexical semantic analyses for comparative corpus ranking.","PeriodicalId":186446,"journal":{"name":"2020 Intermountain Engineering, Technology and Computing (IETC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tweet-Inspired Intelligent Subselection of Semantically-Related Lyrical Training Data\",\"authors\":\"Dylan Lasher, P. Bodily\",\"doi\":\"10.1109/IETC47856.2020.9249149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A current challenge in AI research is enabling AI systems to be inspired by external sources. We present a method for subselecting portions of a training corpus based on relevance to an external inspiring source. Our system takes an external, text-based inspiring source (e.g., tweet), extracts weighted lexical topics contained in the inspiring source, and uses these weighted topics to rank training instances in a corpus of song lyrics according to their relevance to the inspiring source. The system extends on the capabilities of the Empath framework by automatically generating domain-specific categories and mapping functions. The system offers a novel approach toward improved lexical semantic analyses for comparative corpus ranking.\",\"PeriodicalId\":186446,\"journal\":{\"name\":\"2020 Intermountain Engineering, Technology and Computing (IETC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Intermountain Engineering, Technology and Computing (IETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IETC47856.2020.9249149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IETC47856.2020.9249149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能研究目前面临的一个挑战是使人工智能系统能够从外部资源中获得灵感。我们提出了一种基于与外部激励源的相关性来选择训练语料库部分的方法。我们的系统采用一个外部的、基于文本的激励源(例如,tweet),提取激励源中包含的加权词汇主题,并使用这些加权主题根据与激励源的相关性对歌词语料库中的训练实例进行排名。系统通过自动生成特定领域的分类和映射功能扩展了Empath框架的功能。该系统为词法语义分析的改进提供了一种新的比较语料库排序方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tweet-Inspired Intelligent Subselection of Semantically-Related Lyrical Training Data
A current challenge in AI research is enabling AI systems to be inspired by external sources. We present a method for subselecting portions of a training corpus based on relevance to an external inspiring source. Our system takes an external, text-based inspiring source (e.g., tweet), extracts weighted lexical topics contained in the inspiring source, and uses these weighted topics to rank training instances in a corpus of song lyrics according to their relevance to the inspiring source. The system extends on the capabilities of the Empath framework by automatically generating domain-specific categories and mapping functions. The system offers a novel approach toward improved lexical semantic analyses for comparative corpus ranking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信