基于模糊熵的DCT域自调整DE和kelm图像水印

V. P. Vishwakarma, Varsha Sisaudia
{"title":"基于模糊熵的DCT域自调整DE和kelm图像水印","authors":"V. P. Vishwakarma, Varsha Sisaudia","doi":"10.1504/ijes.2020.10029447","DOIUrl":null,"url":null,"abstract":"With advances in machine learning and development of neural networks that are efficient and accurate, this paper explores the use of kernel extreme learning machine (KELM) to develop a semi-blind watermarking technique for grey-scale images in discrete cosine transform domain. Fuzzy entropy is employed for selection of the blocks where the watermark bits are to be embedded. A dataset formed from these blocks is used to train KELM. The nonlinear regression property of KELM predicts the values where watermark bits are embedded. Self-adjustive differential evolution (SeAdDE) controls the strength of the scaling factors finds their optimal values. The adaptiveness of differential evolution (DE) helps in self-adjustment and varies the DE parameters to explore best solutions. This saves time as the manual hit and trial method for finding the appropriate parameter values is avoided. The scheme presented shows robustness against various attacks like histogram equalisation, resizing, JPEG compression, Weiner filtering, etc. and still also retains the quality of the watermarked image. Thus, the proposed technique can be used as a solution to ensure authenticity via watermarking.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Self-adjustive DE and KELM-based image watermarking in DCT domain using fuzzy entropy\",\"authors\":\"V. P. Vishwakarma, Varsha Sisaudia\",\"doi\":\"10.1504/ijes.2020.10029447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With advances in machine learning and development of neural networks that are efficient and accurate, this paper explores the use of kernel extreme learning machine (KELM) to develop a semi-blind watermarking technique for grey-scale images in discrete cosine transform domain. Fuzzy entropy is employed for selection of the blocks where the watermark bits are to be embedded. A dataset formed from these blocks is used to train KELM. The nonlinear regression property of KELM predicts the values where watermark bits are embedded. Self-adjustive differential evolution (SeAdDE) controls the strength of the scaling factors finds their optimal values. The adaptiveness of differential evolution (DE) helps in self-adjustment and varies the DE parameters to explore best solutions. This saves time as the manual hit and trial method for finding the appropriate parameter values is avoided. The scheme presented shows robustness against various attacks like histogram equalisation, resizing, JPEG compression, Weiner filtering, etc. and still also retains the quality of the watermarked image. Thus, the proposed technique can be used as a solution to ensure authenticity via watermarking.\",\"PeriodicalId\":412308,\"journal\":{\"name\":\"Int. J. Embed. Syst.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijes.2020.10029447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2020.10029447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着机器学习的进步和神经网络高效、准确的发展,本文探讨了利用核极限学习机(KELM)在离散余弦变换域开发灰度图像的半盲水印技术。该算法利用模糊熵来选择嵌入水印位的块。由这些块组成的数据集用于训练KELM。KELM的非线性回归特性预测了嵌入水印位的位置。自调整差分进化(SeAdDE)控制尺度因子的强度,找到它们的最优值。微分进化的自适应性有助于自我调整并改变微分进化的参数以探索最佳解。这节省了时间,因为避免了手动命中和尝试寻找适当参数值的方法。该方案对直方图均衡化、调整大小、JPEG压缩、韦纳滤波等攻击具有较强的鲁棒性,同时仍能保持水印图像的质量。因此,该技术可以作为一种通过水印来保证真实性的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-adjustive DE and KELM-based image watermarking in DCT domain using fuzzy entropy
With advances in machine learning and development of neural networks that are efficient and accurate, this paper explores the use of kernel extreme learning machine (KELM) to develop a semi-blind watermarking technique for grey-scale images in discrete cosine transform domain. Fuzzy entropy is employed for selection of the blocks where the watermark bits are to be embedded. A dataset formed from these blocks is used to train KELM. The nonlinear regression property of KELM predicts the values where watermark bits are embedded. Self-adjustive differential evolution (SeAdDE) controls the strength of the scaling factors finds their optimal values. The adaptiveness of differential evolution (DE) helps in self-adjustment and varies the DE parameters to explore best solutions. This saves time as the manual hit and trial method for finding the appropriate parameter values is avoided. The scheme presented shows robustness against various attacks like histogram equalisation, resizing, JPEG compression, Weiner filtering, etc. and still also retains the quality of the watermarked image. Thus, the proposed technique can be used as a solution to ensure authenticity via watermarking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信