Despoina Chatzakou, N. Kourtellis, Jeremy Blackburn, Emiliano De Cristofaro, G. Stringhini, A. Vakali
{"title":"刻薄的鸟:在Twitter上检测侵略和欺凌","authors":"Despoina Chatzakou, N. Kourtellis, Jeremy Blackburn, Emiliano De Cristofaro, G. Stringhini, A. Vakali","doi":"10.1145/3091478.3091487","DOIUrl":null,"url":null,"abstract":"In recent years, bullying and aggression against social media users have grown significantly, causing serious consequences to victims of all demographics. Nowadays, cyberbullying affects more than half of young social media users worldwide, suffering from prolonged and/or coordinated digital harassment. Also, tools and technologies geared to understand and mitigate it are scarce and mostly ineffective. In this paper, we present a principled and scalable approach to detect bullying and aggressive behavior on Twitter. We propose a robust methodology for extracting text, user, and network-based attributes, studying the properties of bullies and aggressors, and what features distinguish them from regular users. We find that bullies post less, participate in fewer online communities, and are less popular than normal users. Aggressors are relatively popular and tend to include more negativity in their posts. We evaluate our methodology using a corpus of 1.6M tweets posted over 3 months, and show that machine learning classification algorithms can accurately detect users exhibiting bullying and aggressive behavior, with over 90% AUC.","PeriodicalId":165747,"journal":{"name":"Proceedings of the 2017 ACM on Web Science Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"363","resultStr":"{\"title\":\"Mean Birds: Detecting Aggression and Bullying on Twitter\",\"authors\":\"Despoina Chatzakou, N. Kourtellis, Jeremy Blackburn, Emiliano De Cristofaro, G. Stringhini, A. Vakali\",\"doi\":\"10.1145/3091478.3091487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, bullying and aggression against social media users have grown significantly, causing serious consequences to victims of all demographics. Nowadays, cyberbullying affects more than half of young social media users worldwide, suffering from prolonged and/or coordinated digital harassment. Also, tools and technologies geared to understand and mitigate it are scarce and mostly ineffective. In this paper, we present a principled and scalable approach to detect bullying and aggressive behavior on Twitter. We propose a robust methodology for extracting text, user, and network-based attributes, studying the properties of bullies and aggressors, and what features distinguish them from regular users. We find that bullies post less, participate in fewer online communities, and are less popular than normal users. Aggressors are relatively popular and tend to include more negativity in their posts. We evaluate our methodology using a corpus of 1.6M tweets posted over 3 months, and show that machine learning classification algorithms can accurately detect users exhibiting bullying and aggressive behavior, with over 90% AUC.\",\"PeriodicalId\":165747,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"363\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3091478.3091487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3091478.3091487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mean Birds: Detecting Aggression and Bullying on Twitter
In recent years, bullying and aggression against social media users have grown significantly, causing serious consequences to victims of all demographics. Nowadays, cyberbullying affects more than half of young social media users worldwide, suffering from prolonged and/or coordinated digital harassment. Also, tools and technologies geared to understand and mitigate it are scarce and mostly ineffective. In this paper, we present a principled and scalable approach to detect bullying and aggressive behavior on Twitter. We propose a robust methodology for extracting text, user, and network-based attributes, studying the properties of bullies and aggressors, and what features distinguish them from regular users. We find that bullies post less, participate in fewer online communities, and are less popular than normal users. Aggressors are relatively popular and tend to include more negativity in their posts. We evaluate our methodology using a corpus of 1.6M tweets posted over 3 months, and show that machine learning classification algorithms can accurately detect users exhibiting bullying and aggressive behavior, with over 90% AUC.