从用户选择的文本生成查询

Chia-Jung Lee, W. Bruce Croft
{"title":"从用户选择的文本生成查询","authors":"Chia-Jung Lee, W. Bruce Croft","doi":"10.1145/2362724.2362744","DOIUrl":null,"url":null,"abstract":"People browsing the web or reading a document may see text passages that describe a topic of interest, and want to know more about it by searching. Manually formulating a query from that text can be difficult, however, and an effective search is not guaranteed. In this paper, to address this scenario, we propose a learning-based approach which generates effective queries from the content of an arbitrary user-selected text passage. Specifically, the approach extracts and selects representative chunks (noun phrases or named entities) from the content (a text passage) using a rich set of features. We carry out experiments showing that the selected chunks can be effectively used to generate queries both in a TREC environment, where weights and query structure can be directly incorporated, and with a \"black-box\" web search engine, where query structure is more limited.","PeriodicalId":413481,"journal":{"name":"International Conference on Information Interaction in Context","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Generating queries from user-selected text\",\"authors\":\"Chia-Jung Lee, W. Bruce Croft\",\"doi\":\"10.1145/2362724.2362744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People browsing the web or reading a document may see text passages that describe a topic of interest, and want to know more about it by searching. Manually formulating a query from that text can be difficult, however, and an effective search is not guaranteed. In this paper, to address this scenario, we propose a learning-based approach which generates effective queries from the content of an arbitrary user-selected text passage. Specifically, the approach extracts and selects representative chunks (noun phrases or named entities) from the content (a text passage) using a rich set of features. We carry out experiments showing that the selected chunks can be effectively used to generate queries both in a TREC environment, where weights and query structure can be directly incorporated, and with a \\\"black-box\\\" web search engine, where query structure is more limited.\",\"PeriodicalId\":413481,\"journal\":{\"name\":\"International Conference on Information Interaction in Context\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Interaction in Context\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2362724.2362744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Interaction in Context","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2362724.2362744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

人们在浏览网页或阅读文档时,可能会看到描述感兴趣主题的文本段落,并希望通过搜索了解更多相关信息。但是,从该文本手动制定查询可能很困难,并且不能保证有效的搜索。在本文中,为了解决这种情况,我们提出了一种基于学习的方法,该方法从任意用户选择的文本段落的内容中生成有效的查询。具体来说,该方法使用丰富的特征集从内容(文本段落)中提取和选择具有代表性的块(名词短语或命名实体)。我们进行的实验表明,所选择的块可以有效地用于在TREC环境中生成查询,在TREC环境中,权值和查询结构可以直接合并,而在“黑箱”web搜索引擎中,查询结构更有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating queries from user-selected text
People browsing the web or reading a document may see text passages that describe a topic of interest, and want to know more about it by searching. Manually formulating a query from that text can be difficult, however, and an effective search is not guaranteed. In this paper, to address this scenario, we propose a learning-based approach which generates effective queries from the content of an arbitrary user-selected text passage. Specifically, the approach extracts and selects representative chunks (noun phrases or named entities) from the content (a text passage) using a rich set of features. We carry out experiments showing that the selected chunks can be effectively used to generate queries both in a TREC environment, where weights and query structure can be directly incorporated, and with a "black-box" web search engine, where query structure is more limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信