基于自适应差分进化的高维函数优化

C. Worasucheep
{"title":"基于自适应差分进化的高维函数优化","authors":"C. Worasucheep","doi":"10.1109/ICICISYS.2009.5357711","DOIUrl":null,"url":null,"abstract":"A good optimization algorithm must be capable of handling high-dimensional problems, meaning that there are many decision variables to be optimized at the same time. The problems of this category are challenging. This paper tests the scalability of wDE, which is a differential evolution algorithm with self-adaptive parameters. The statistical results and convergence graphs from the experimentation using benchmark problems of 100-, 500-, and 2000-dimensions are analyzed and compared to three standard variants of differential evolution algorithm.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-dimensional function optimization with a self adaptive differential evolution\",\"authors\":\"C. Worasucheep\",\"doi\":\"10.1109/ICICISYS.2009.5357711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A good optimization algorithm must be capable of handling high-dimensional problems, meaning that there are many decision variables to be optimized at the same time. The problems of this category are challenging. This paper tests the scalability of wDE, which is a differential evolution algorithm with self-adaptive parameters. The statistical results and convergence graphs from the experimentation using benchmark problems of 100-, 500-, and 2000-dimensions are analyzed and compared to three standard variants of differential evolution algorithm.\",\"PeriodicalId\":206575,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2009.5357711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5357711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一个好的优化算法必须能够处理高维问题,这意味着同时有许多决策变量需要优化。这类问题具有挑战性。wDE是一种参数自适应的差分进化算法,本文对其可扩展性进行了测试。对100维、500维和2000维基准问题的统计结果和收敛图进行了分析,并与差分进化算法的三种标准变体进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-dimensional function optimization with a self adaptive differential evolution
A good optimization algorithm must be capable of handling high-dimensional problems, meaning that there are many decision variables to be optimized at the same time. The problems of this category are challenging. This paper tests the scalability of wDE, which is a differential evolution algorithm with self-adaptive parameters. The statistical results and convergence graphs from the experimentation using benchmark problems of 100-, 500-, and 2000-dimensions are analyzed and compared to three standard variants of differential evolution algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信