关于多项式的亨塞尔升

Z. Wan
{"title":"关于多项式的亨塞尔升","authors":"Z. Wan","doi":"10.1109/ISIT.2000.866292","DOIUrl":null,"url":null,"abstract":"Denote by R the Galois ring of characteristic p/sup e/ and cardinality p/sup em/, where p is a prime and e and m are positive integers. Let g(x) be a monic polynomial over F/sub p/m. A polynomial f(x) over R is defined to be a Hensel lift of g(x) in R[x] if f~(x)=g(x), and there is a positive integer n not divisible by p such that f(x) divides x/sup n/-1 in R[x]. It is proved that g(x) has a unique Hensel lift in R[x] if and only if g(x) has no multiple roots and x/spl chi/g(x). An algorithm to compute the Hensel lift is also given.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hensel lift of a polynomial\",\"authors\":\"Z. Wan\",\"doi\":\"10.1109/ISIT.2000.866292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denote by R the Galois ring of characteristic p/sup e/ and cardinality p/sup em/, where p is a prime and e and m are positive integers. Let g(x) be a monic polynomial over F/sub p/m. A polynomial f(x) over R is defined to be a Hensel lift of g(x) in R[x] if f~(x)=g(x), and there is a positive integer n not divisible by p such that f(x) divides x/sup n/-1 in R[x]. It is proved that g(x) has a unique Hensel lift in R[x] if and only if g(x) has no multiple roots and x/spl chi/g(x). An algorithm to compute the Hensel lift is also given.\",\"PeriodicalId\":108752,\"journal\":{\"name\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2000.866292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用R表示特征为p/sup e/和基数为p/sup em/的伽罗瓦环,其中p为素数,e和m为正整数。设g(x)是一个单多项式除以F/ p/m。如果f~(x)=g(x),则多项式f(x) / R定义为g(x)在R[x]中的亨塞尔升力,并且存在一个不能被p整除的正整数n,使得f(x)能除R[x]中的x/sup n/-1。证明了g(x)在R[x]中有唯一的Hensel升当且仅当g(x)无重根且x/spl chi/g(x)。给出了计算Hensel升力的一种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Hensel lift of a polynomial
Denote by R the Galois ring of characteristic p/sup e/ and cardinality p/sup em/, where p is a prime and e and m are positive integers. Let g(x) be a monic polynomial over F/sub p/m. A polynomial f(x) over R is defined to be a Hensel lift of g(x) in R[x] if f~(x)=g(x), and there is a positive integer n not divisible by p such that f(x) divides x/sup n/-1 in R[x]. It is proved that g(x) has a unique Hensel lift in R[x] if and only if g(x) has no multiple roots and x/spl chi/g(x). An algorithm to compute the Hensel lift is also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信