布隆过滤器在大数据分析中的作用

Sudhriti Sengupta, A. Rana
{"title":"布隆过滤器在大数据分析中的作用","authors":"Sudhriti Sengupta, A. Rana","doi":"10.1109/ICRITO48877.2020.9197859","DOIUrl":null,"url":null,"abstract":"Big data is a collection of large amount of data which increases in volume, velocity and variety very rapidly. As a researcher, deriving values of importance from this large repository of data is utmost important and challenging. This paper discusses the methods for using Probabilistic Data Structure in Big Data Analysis. The application is primarily focused on Bloom Filters as processing of big data is a major challenge because big data is a continuous stream of rapidly increasing data. To have maximum benefit from data, a bloom Filter can be used so that usability of big data can be achieved while decreasing space or time.","PeriodicalId":141265,"journal":{"name":"2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Role of Bloom Filter in Analysis of Big Data\",\"authors\":\"Sudhriti Sengupta, A. Rana\",\"doi\":\"10.1109/ICRITO48877.2020.9197859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data is a collection of large amount of data which increases in volume, velocity and variety very rapidly. As a researcher, deriving values of importance from this large repository of data is utmost important and challenging. This paper discusses the methods for using Probabilistic Data Structure in Big Data Analysis. The application is primarily focused on Bloom Filters as processing of big data is a major challenge because big data is a continuous stream of rapidly increasing data. To have maximum benefit from data, a bloom Filter can be used so that usability of big data can be achieved while decreasing space or time.\",\"PeriodicalId\":141265,\"journal\":{\"name\":\"2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRITO48877.2020.9197859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRITO48877.2020.9197859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大数据是大量数据的集合,其数量、速度和种类都在迅速增长。作为一名研究人员,从这个庞大的数据库中获得重要的价值是极其重要和具有挑战性的。本文讨论了概率数据结构在大数据分析中的应用方法。该应用程序主要侧重于Bloom Filters,因为处理大数据是一个主要挑战,因为大数据是一个快速增长的连续数据流。为了从数据中获得最大的收益,可以使用bloom Filter,以便在减少空间或时间的同时实现大数据的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of Bloom Filter in Analysis of Big Data
Big data is a collection of large amount of data which increases in volume, velocity and variety very rapidly. As a researcher, deriving values of importance from this large repository of data is utmost important and challenging. This paper discusses the methods for using Probabilistic Data Structure in Big Data Analysis. The application is primarily focused on Bloom Filters as processing of big data is a major challenge because big data is a continuous stream of rapidly increasing data. To have maximum benefit from data, a bloom Filter can be used so that usability of big data can be achieved while decreasing space or time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信