基数余于的模的自同态环

R. Gobel, S. Shelah
{"title":"基数余于的模的自同态环","authors":"R. Gobel, S. Shelah","doi":"10.1201/9780429187605-20","DOIUrl":null,"url":null,"abstract":"The main result is \r\nTheorem: Let A be an R-algebra, mu, lambda be cardinals such that |A|<=mu=mu^{aleph_0}<lambda<=2^mu. If A is aleph_0-cotorsion-free or A is countably free, respectively, then there exists an aleph_0-cotorsion-free or a separable (reduced, torsion-free) R-module G respectively of cardinality |G|=lambda with End_RG=A oplus Fin G.","PeriodicalId":139517,"journal":{"name":"abelian groups, module theory, and topology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endomorphism Rings of Modules Whose Cardinality Is Cofinal to Omega\",\"authors\":\"R. Gobel, S. Shelah\",\"doi\":\"10.1201/9780429187605-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main result is \\r\\nTheorem: Let A be an R-algebra, mu, lambda be cardinals such that |A|<=mu=mu^{aleph_0}<lambda<=2^mu. If A is aleph_0-cotorsion-free or A is countably free, respectively, then there exists an aleph_0-cotorsion-free or a separable (reduced, torsion-free) R-module G respectively of cardinality |G|=lambda with End_RG=A oplus Fin G.\",\"PeriodicalId\":139517,\"journal\":{\"name\":\"abelian groups, module theory, and topology\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"abelian groups, module theory, and topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429187605-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"abelian groups, module theory, and topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429187605-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主要结果是定理:设A是一个r代数,mu, λ是基数,使得|A|<=mu=mu^{aleph_0}本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Endomorphism Rings of Modules Whose Cardinality Is Cofinal to Omega
The main result is Theorem: Let A be an R-algebra, mu, lambda be cardinals such that |A|<=mu=mu^{aleph_0}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信