在部分完整数据上使用Imputation技术的Skyline查询执行比较分析

S. Kanmani, E. Kirubakaran, E. Rajsingh
{"title":"在部分完整数据上使用Imputation技术的Skyline查询执行比较分析","authors":"S. Kanmani, E. Kirubakaran, E. Rajsingh","doi":"10.4108/EAI.16-5-2020.2303973","DOIUrl":null,"url":null,"abstract":". In this era, the Database community depends on preference queries to satisfy user needs according to their given preferences. Skyline query is one of the preference-based queries. The skyline proceeds with contradictory preferences given by the user. Skyline query derived from the maximum vector problem which deals with Pareto dominance. Skyline query always leads to promising results in the complete data environment. Due to the dynamic data setup, this leads to unknown values or noisy data in the database. This type of data leads partially complete data environment and this affects the performance of skyline queries. This paper gives an analysis of complete and partially complete data using skyline queries with imputation techniques. Two different imputation techniques are used namely Random forest and Amelia to execute the Skyline query on partially complete data. The experimental study gives the solemnity of partially complete data using the skyline query and its influence on the result of the query.","PeriodicalId":274686,"journal":{"name":"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Skyline Query Execution using Imputation Techniques on Partially Complete Data\",\"authors\":\"S. Kanmani, E. Kirubakaran, E. Rajsingh\",\"doi\":\"10.4108/EAI.16-5-2020.2303973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this era, the Database community depends on preference queries to satisfy user needs according to their given preferences. Skyline query is one of the preference-based queries. The skyline proceeds with contradictory preferences given by the user. Skyline query derived from the maximum vector problem which deals with Pareto dominance. Skyline query always leads to promising results in the complete data environment. Due to the dynamic data setup, this leads to unknown values or noisy data in the database. This type of data leads partially complete data environment and this affects the performance of skyline queries. This paper gives an analysis of complete and partially complete data using skyline queries with imputation techniques. Two different imputation techniques are used namely Random forest and Amelia to execute the Skyline query on partially complete data. The experimental study gives the solemnity of partially complete data using the skyline query and its influence on the result of the query.\",\"PeriodicalId\":274686,\"journal\":{\"name\":\"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.16-5-2020.2303973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.16-5-2020.2303973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 在这个时代,数据库社区依靠偏好查询来满足用户给定的偏好。Skyline查询是一种基于首选项的查询。天际线的发展与用户的偏好相矛盾。Skyline查询是由处理Pareto优势的最大向量问题衍生而来。在完整的数据环境中,Skyline查询总是会得到令人满意的结果。由于动态数据设置,这会导致数据库中出现未知值或噪声数据。这种类型的数据导致部分完整的数据环境,从而影响skyline查询的性能。本文利用天际线查询和插值技术对完全和部分完全数据进行了分析。使用了两种不同的输入技术,即Random forest和Amelia,对部分完整的数据执行Skyline查询。实验研究了部分完整数据的天际线查询的严肃性及其对查询结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Skyline Query Execution using Imputation Techniques on Partially Complete Data
. In this era, the Database community depends on preference queries to satisfy user needs according to their given preferences. Skyline query is one of the preference-based queries. The skyline proceeds with contradictory preferences given by the user. Skyline query derived from the maximum vector problem which deals with Pareto dominance. Skyline query always leads to promising results in the complete data environment. Due to the dynamic data setup, this leads to unknown values or noisy data in the database. This type of data leads partially complete data environment and this affects the performance of skyline queries. This paper gives an analysis of complete and partially complete data using skyline queries with imputation techniques. Two different imputation techniques are used namely Random forest and Amelia to execute the Skyline query on partially complete data. The experimental study gives the solemnity of partially complete data using the skyline query and its influence on the result of the query.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信