{"title":"基于机电相交特征的发电机混合故障诊断方法","authors":"Yu‐Ling He, Yue-Xin Sun","doi":"10.5772/INTECHOPEN.79955","DOIUrl":null,"url":null,"abstract":"In this chapter, a new hybrid fault diagnosis method based on the mechanical-electrical intersectional characteristics for turbo-generators is proposed. Different from other studies, this method not only employs the rotor vibration characteristics but also uses the stator vibration features and the circulating current properties inside the parallel branches of the same phase. Detailed theoretical analysis, as well as the experimental verification study, is carried out to demonstrate the proposed method. It is shown that in the proposed criterion for the method, the combining faulty characteristics for the single rotor eccentric- ity fault, the single rotor interturn short circuit fault, and the composite fault composed of the rotor eccentricity and the rotor interturn short circuit are all unique. The running conditions can be accurately and quickly identified by the proposed method. The work proposed in this chapter offers a new thought for the condition monitoring and the fault diagnosis of generators.","PeriodicalId":358379,"journal":{"name":"Fault Detection and Diagnosis","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Fault Diagnosis Method Based on Mechanical-Electrical Intersectional Characteristics for Generators\",\"authors\":\"Yu‐Ling He, Yue-Xin Sun\",\"doi\":\"10.5772/INTECHOPEN.79955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, a new hybrid fault diagnosis method based on the mechanical-electrical intersectional characteristics for turbo-generators is proposed. Different from other studies, this method not only employs the rotor vibration characteristics but also uses the stator vibration features and the circulating current properties inside the parallel branches of the same phase. Detailed theoretical analysis, as well as the experimental verification study, is carried out to demonstrate the proposed method. It is shown that in the proposed criterion for the method, the combining faulty characteristics for the single rotor eccentric- ity fault, the single rotor interturn short circuit fault, and the composite fault composed of the rotor eccentricity and the rotor interturn short circuit are all unique. The running conditions can be accurately and quickly identified by the proposed method. The work proposed in this chapter offers a new thought for the condition monitoring and the fault diagnosis of generators.\",\"PeriodicalId\":358379,\"journal\":{\"name\":\"Fault Detection and Diagnosis\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fault Detection and Diagnosis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.79955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fault Detection and Diagnosis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Fault Diagnosis Method Based on Mechanical-Electrical Intersectional Characteristics for Generators
In this chapter, a new hybrid fault diagnosis method based on the mechanical-electrical intersectional characteristics for turbo-generators is proposed. Different from other studies, this method not only employs the rotor vibration characteristics but also uses the stator vibration features and the circulating current properties inside the parallel branches of the same phase. Detailed theoretical analysis, as well as the experimental verification study, is carried out to demonstrate the proposed method. It is shown that in the proposed criterion for the method, the combining faulty characteristics for the single rotor eccentric- ity fault, the single rotor interturn short circuit fault, and the composite fault composed of the rotor eccentricity and the rotor interturn short circuit are all unique. The running conditions can be accurately and quickly identified by the proposed method. The work proposed in this chapter offers a new thought for the condition monitoring and the fault diagnosis of generators.