基于遗传算法的液压球形运动作动器自抗扰参数整定方法

B. Bian, Liang Wang
{"title":"基于遗传算法的液压球形运动作动器自抗扰参数整定方法","authors":"B. Bian, Liang Wang","doi":"10.1109/ICEEE52452.2021.9415971","DOIUrl":null,"url":null,"abstract":"This paper presents a parameters tuning method based on the genetic algorithm for an active disturbance rejection controller (ADRC) of a hydraulic spherical motion actuator. The dynamic model of the hydraulic spherical motion actuator derived by Lagrange approach is evidently a nonlinear coupling system with parameters time-varying and model uncertainties, which will inevitably influence the tracking performance. To improve the trajectory tracking performance, a robust ADRC based on genetic optimization, which consists of a nonlinear tracking differentiator, extended state observer, and nonlinear state error feedback, is proposed. Utilize the genetic algorithm to optimize the parameters of the ADRC automatically. In the process of ADRC parameter optimization, the evaluation function is established, in which the dynamic performance and the input constraints of the controller are comprehensively considered. Finally, the effectiveness of the proposed approach is validated via the simulation results.","PeriodicalId":429645,"journal":{"name":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GA-Based Parameters Tuning Method for Active Disturbance Rejection Control of Hydraulic Spherical Motion Actuator\",\"authors\":\"B. Bian, Liang Wang\",\"doi\":\"10.1109/ICEEE52452.2021.9415971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a parameters tuning method based on the genetic algorithm for an active disturbance rejection controller (ADRC) of a hydraulic spherical motion actuator. The dynamic model of the hydraulic spherical motion actuator derived by Lagrange approach is evidently a nonlinear coupling system with parameters time-varying and model uncertainties, which will inevitably influence the tracking performance. To improve the trajectory tracking performance, a robust ADRC based on genetic optimization, which consists of a nonlinear tracking differentiator, extended state observer, and nonlinear state error feedback, is proposed. Utilize the genetic algorithm to optimize the parameters of the ADRC automatically. In the process of ADRC parameter optimization, the evaluation function is established, in which the dynamic performance and the input constraints of the controller are comprehensively considered. Finally, the effectiveness of the proposed approach is validated via the simulation results.\",\"PeriodicalId\":429645,\"journal\":{\"name\":\"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE52452.2021.9415971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE52452.2021.9415971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于遗传算法的液压球动作动器自抗扰控制器参数整定方法。采用拉格朗日方法推导的液压球形运动作动器动力学模型是一个具有参数时变和模型不确定性的非线性耦合系统,不可避免地会影响系统的跟踪性能。为了提高轨迹跟踪性能,提出了一种基于遗传优化的鲁棒自抗扰控制器,该控制器由非线性跟踪微分器、扩展状态观测器和非线性状态误差反馈组成。利用遗传算法对自抗扰控制器参数进行自动优化。在自抗扰控制器参数优化过程中,建立了综合考虑控制器动态性能和输入约束的评价函数。最后,通过仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GA-Based Parameters Tuning Method for Active Disturbance Rejection Control of Hydraulic Spherical Motion Actuator
This paper presents a parameters tuning method based on the genetic algorithm for an active disturbance rejection controller (ADRC) of a hydraulic spherical motion actuator. The dynamic model of the hydraulic spherical motion actuator derived by Lagrange approach is evidently a nonlinear coupling system with parameters time-varying and model uncertainties, which will inevitably influence the tracking performance. To improve the trajectory tracking performance, a robust ADRC based on genetic optimization, which consists of a nonlinear tracking differentiator, extended state observer, and nonlinear state error feedback, is proposed. Utilize the genetic algorithm to optimize the parameters of the ADRC automatically. In the process of ADRC parameter optimization, the evaluation function is established, in which the dynamic performance and the input constraints of the controller are comprehensively considered. Finally, the effectiveness of the proposed approach is validated via the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信