Sylvia Bhattacharya, Kaushik Bhimraj, Rami J. Haddad, M. Ahad
{"title":"基于多数投票的脑电图假想运动分类优化","authors":"Sylvia Bhattacharya, Kaushik Bhimraj, Rami J. Haddad, M. Ahad","doi":"10.1109/SECON.2017.7925328","DOIUrl":null,"url":null,"abstract":"Electroencephalography is widely used to record neural activity with electrodes positioned at specific locations on a human scalp. These recorded signals are interfaced with a computer which is referred to as noninvasive Brain Computer Interface (BCI). An important application of this technology is to help facilitate the lives of the tetraplegic through assimilating human brain impulses and converting them into mechanical motion. However, BCI systems are remarkably challenging to implement as recorded brain signals can be unreliable and vary in pattern throughout time. In this paper, a novel classifier structure is proposed to classify different types of imaginary motions (left hand, right hand, and imagination of words starting with the same letter) across multiple sessions using an optimized set of electrodes for each user. The proposed technique uses raw brain signals obtained utilizing 32 electrodes and classifies the imaginary motions using Artificial Neural Networks (ANN). To enhance the classification rate and optimize the set of electrodes of each subject, a majority voting system combining a set of simple ANNs is used. This electrode optimization technique achieved classification accuracies of 69.83%, 94.04% and 84.56% respectively for the three subjects considered in this study.","PeriodicalId":368197,"journal":{"name":"SoutheastCon 2017","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimization of EEG-based imaginary motion classification using majority-voting\",\"authors\":\"Sylvia Bhattacharya, Kaushik Bhimraj, Rami J. Haddad, M. Ahad\",\"doi\":\"10.1109/SECON.2017.7925328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography is widely used to record neural activity with electrodes positioned at specific locations on a human scalp. These recorded signals are interfaced with a computer which is referred to as noninvasive Brain Computer Interface (BCI). An important application of this technology is to help facilitate the lives of the tetraplegic through assimilating human brain impulses and converting them into mechanical motion. However, BCI systems are remarkably challenging to implement as recorded brain signals can be unreliable and vary in pattern throughout time. In this paper, a novel classifier structure is proposed to classify different types of imaginary motions (left hand, right hand, and imagination of words starting with the same letter) across multiple sessions using an optimized set of electrodes for each user. The proposed technique uses raw brain signals obtained utilizing 32 electrodes and classifies the imaginary motions using Artificial Neural Networks (ANN). To enhance the classification rate and optimize the set of electrodes of each subject, a majority voting system combining a set of simple ANNs is used. This electrode optimization technique achieved classification accuracies of 69.83%, 94.04% and 84.56% respectively for the three subjects considered in this study.\",\"PeriodicalId\":368197,\"journal\":{\"name\":\"SoutheastCon 2017\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SoutheastCon 2017\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2017.7925328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoutheastCon 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2017.7925328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of EEG-based imaginary motion classification using majority-voting
Electroencephalography is widely used to record neural activity with electrodes positioned at specific locations on a human scalp. These recorded signals are interfaced with a computer which is referred to as noninvasive Brain Computer Interface (BCI). An important application of this technology is to help facilitate the lives of the tetraplegic through assimilating human brain impulses and converting them into mechanical motion. However, BCI systems are remarkably challenging to implement as recorded brain signals can be unreliable and vary in pattern throughout time. In this paper, a novel classifier structure is proposed to classify different types of imaginary motions (left hand, right hand, and imagination of words starting with the same letter) across multiple sessions using an optimized set of electrodes for each user. The proposed technique uses raw brain signals obtained utilizing 32 electrodes and classifies the imaginary motions using Artificial Neural Networks (ANN). To enhance the classification rate and optimize the set of electrodes of each subject, a majority voting system combining a set of simple ANNs is used. This electrode optimization technique achieved classification accuracies of 69.83%, 94.04% and 84.56% respectively for the three subjects considered in this study.