混合推荐系统的灵活和可扩展的概率框架

Pigi Kouki, Shobeir Fakhraei, James R. Foulds, M. Eirinaki, L. Getoor
{"title":"混合推荐系统的灵活和可扩展的概率框架","authors":"Pigi Kouki, Shobeir Fakhraei, James R. Foulds, M. Eirinaki, L. Getoor","doi":"10.1145/2792838.2800175","DOIUrl":null,"url":null,"abstract":"As the amount of recorded digital information increases, there is a growing need for flexible recommender systems which can incorporate richly structured data sources to improve recommendations. In this paper, we show how a recently introduced statistical relational learning framework can be used to develop a generic and extensible hybrid recommender system. Our hybrid approach, HyPER (HYbrid Probabilistic Extensible Recommender), incorporates and reasons over a wide range of information sources. Such sources include multiple user-user and item-item similarity measures, content, and social information. HyPER automatically learns to balance these different information signals when making predictions. We build our system using a powerful and intuitive probabilistic programming language called probabilistic soft logic, which enables efficient and accurate prediction by formulating our custom recommender systems with a scalable class of graphical models known as hinge-loss Markov random fields. We experimentally evaluate our approach on two popular recommendation datasets, showing that HyPER can effectively combine multiple information types for improved performance, and can significantly outperform existing state-of-the-art approaches.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"HyPER: A Flexible and Extensible Probabilistic Framework for Hybrid Recommender Systems\",\"authors\":\"Pigi Kouki, Shobeir Fakhraei, James R. Foulds, M. Eirinaki, L. Getoor\",\"doi\":\"10.1145/2792838.2800175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the amount of recorded digital information increases, there is a growing need for flexible recommender systems which can incorporate richly structured data sources to improve recommendations. In this paper, we show how a recently introduced statistical relational learning framework can be used to develop a generic and extensible hybrid recommender system. Our hybrid approach, HyPER (HYbrid Probabilistic Extensible Recommender), incorporates and reasons over a wide range of information sources. Such sources include multiple user-user and item-item similarity measures, content, and social information. HyPER automatically learns to balance these different information signals when making predictions. We build our system using a powerful and intuitive probabilistic programming language called probabilistic soft logic, which enables efficient and accurate prediction by formulating our custom recommender systems with a scalable class of graphical models known as hinge-loss Markov random fields. We experimentally evaluate our approach on two popular recommendation datasets, showing that HyPER can effectively combine multiple information types for improved performance, and can significantly outperform existing state-of-the-art approaches.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2800175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2800175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

摘要

随着记录的数字信息数量的增加,越来越需要灵活的推荐系统,这些系统可以结合结构丰富的数据源来改进推荐。在本文中,我们展示了如何使用最近引入的统计关系学习框架来开发通用和可扩展的混合推荐系统。我们的混合方法,HyPER(混合概率可扩展推荐器),结合并分析了广泛的信息源。这些来源包括多个用户-用户和项-项相似性度量、内容和社会信息。在做出预测时,HyPER会自动学会平衡这些不同的信息信号。我们使用一种强大而直观的概率编程语言(称为概率软逻辑)构建我们的系统,它通过使用称为铰链损失马尔可夫随机场的可扩展图形模型来制定我们的定制推荐系统,从而实现高效和准确的预测。我们在两个流行的推荐数据集上实验评估了我们的方法,表明HyPER可以有效地组合多种信息类型以提高性能,并且可以显著优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HyPER: A Flexible and Extensible Probabilistic Framework for Hybrid Recommender Systems
As the amount of recorded digital information increases, there is a growing need for flexible recommender systems which can incorporate richly structured data sources to improve recommendations. In this paper, we show how a recently introduced statistical relational learning framework can be used to develop a generic and extensible hybrid recommender system. Our hybrid approach, HyPER (HYbrid Probabilistic Extensible Recommender), incorporates and reasons over a wide range of information sources. Such sources include multiple user-user and item-item similarity measures, content, and social information. HyPER automatically learns to balance these different information signals when making predictions. We build our system using a powerful and intuitive probabilistic programming language called probabilistic soft logic, which enables efficient and accurate prediction by formulating our custom recommender systems with a scalable class of graphical models known as hinge-loss Markov random fields. We experimentally evaluate our approach on two popular recommendation datasets, showing that HyPER can effectively combine multiple information types for improved performance, and can significantly outperform existing state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信