基于强化学习的抽取文本摘要

Kai Du, Guoming Lu, Ke Qin
{"title":"基于强化学习的抽取文本摘要","authors":"Kai Du, Guoming Lu, Ke Qin","doi":"10.1145/3584871.3584874","DOIUrl":null,"url":null,"abstract":"Abstract: In recent years, with the rapid development of network information technology, network text information also presents an explosive growth trend. As an efficient information processing technology in the digital age, text summarization can bring the advantage of focusing on key information in all directions in massive text information. However, text summarization is still faced with some problems such as difficulty in extracting long text and information redundancy. Therefore, combining with the deep learning framework, this paper proposes an extractive text summarization that uses reinforcement learning to optimize the long text extraction process and uses the attention mechanism to achieve the effect of redundancy removal. On CNN/Daily Mail datasets, the automatic evaluation shows that our model outperforms the previous on ROUGE, and the ablation experiment proves the effectiveness of the de-redundant attention module.","PeriodicalId":173315,"journal":{"name":"Proceedings of the 2023 6th International Conference on Software Engineering and Information Management","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extractive Text Summarization Based on Reinforcement Learning\",\"authors\":\"Kai Du, Guoming Lu, Ke Qin\",\"doi\":\"10.1145/3584871.3584874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: In recent years, with the rapid development of network information technology, network text information also presents an explosive growth trend. As an efficient information processing technology in the digital age, text summarization can bring the advantage of focusing on key information in all directions in massive text information. However, text summarization is still faced with some problems such as difficulty in extracting long text and information redundancy. Therefore, combining with the deep learning framework, this paper proposes an extractive text summarization that uses reinforcement learning to optimize the long text extraction process and uses the attention mechanism to achieve the effect of redundancy removal. On CNN/Daily Mail datasets, the automatic evaluation shows that our model outperforms the previous on ROUGE, and the ablation experiment proves the effectiveness of the de-redundant attention module.\",\"PeriodicalId\":173315,\"journal\":{\"name\":\"Proceedings of the 2023 6th International Conference on Software Engineering and Information Management\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 6th International Conference on Software Engineering and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584871.3584874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 6th International Conference on Software Engineering and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584871.3584874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:近年来,随着网络信息技术的飞速发展,网络文本信息也呈现出爆发式增长的趋势。文本摘要作为数字时代一种高效的信息处理技术,能够在海量文本信息中带来全方位聚焦关键信息的优势。然而,文本摘要仍然面临着长文本提取困难、信息冗余等问题。因此,本文结合深度学习框架,提出一种提取文本摘要,利用强化学习优化长文本提取过程,利用注意机制达到去除冗余的效果。在CNN/Daily Mail数据集上的自动评价结果表明,我们的模型在ROUGE上优于之前的模型,消融实验证明了去冗余关注模块的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extractive Text Summarization Based on Reinforcement Learning
Abstract: In recent years, with the rapid development of network information technology, network text information also presents an explosive growth trend. As an efficient information processing technology in the digital age, text summarization can bring the advantage of focusing on key information in all directions in massive text information. However, text summarization is still faced with some problems such as difficulty in extracting long text and information redundancy. Therefore, combining with the deep learning framework, this paper proposes an extractive text summarization that uses reinforcement learning to optimize the long text extraction process and uses the attention mechanism to achieve the effect of redundancy removal. On CNN/Daily Mail datasets, the automatic evaluation shows that our model outperforms the previous on ROUGE, and the ablation experiment proves the effectiveness of the de-redundant attention module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信