模糊情况下最优停车

F. Riedel
{"title":"模糊情况下最优停车","authors":"F. Riedel","doi":"10.2139/ssrn.1013276","DOIUrl":null,"url":null,"abstract":"We consider optimal stopping problems for ambiguity averse decision makers with multiple priors. In general, backward induction fails. If, however, the class of priors is time-consistent, we establish a generalization of the classical theory of optimal stopping. To this end, we develop first steps of a martingale theory for multiple priors. We define minimax (super)martingales, provide a Doob-Meyer decomposition, and characterize minimax martingales. This allows us to extend the standard backward induction procedure to ambiguous, time-consistent preferences. The value function is the smallest process that is a minimax supermartingale and dominates the payoff process. It is optimal to stop when the current payoff is equal to the value function. Moving on, we study the infinite horizon case. We show that the value process satisfies the same backward recursion (Bellman equation) as in the finite horizon case. The finite horizon solutions converge to the infinite horizon solution. Finally, we characterize completely the set of time-consistent multiple priors in the binomial tree. We solve two classes of examples: the so-called independent and indistinguishable case (the parking problem) and the case of American Options (Cox-Ross-Rubinstein model).","PeriodicalId":207453,"journal":{"name":"ERN: Econometric Modeling in Microeconomics (Topic)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimal Stopping Under Ambiguity\",\"authors\":\"F. Riedel\",\"doi\":\"10.2139/ssrn.1013276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider optimal stopping problems for ambiguity averse decision makers with multiple priors. In general, backward induction fails. If, however, the class of priors is time-consistent, we establish a generalization of the classical theory of optimal stopping. To this end, we develop first steps of a martingale theory for multiple priors. We define minimax (super)martingales, provide a Doob-Meyer decomposition, and characterize minimax martingales. This allows us to extend the standard backward induction procedure to ambiguous, time-consistent preferences. The value function is the smallest process that is a minimax supermartingale and dominates the payoff process. It is optimal to stop when the current payoff is equal to the value function. Moving on, we study the infinite horizon case. We show that the value process satisfies the same backward recursion (Bellman equation) as in the finite horizon case. The finite horizon solutions converge to the infinite horizon solution. Finally, we characterize completely the set of time-consistent multiple priors in the binomial tree. We solve two classes of examples: the so-called independent and indistinguishable case (the parking problem) and the case of American Options (Cox-Ross-Rubinstein model).\",\"PeriodicalId\":207453,\"journal\":{\"name\":\"ERN: Econometric Modeling in Microeconomics (Topic)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Econometric Modeling in Microeconomics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1013276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Modeling in Microeconomics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1013276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑了具有多先验的模糊厌恶决策者的最优停止问题。一般来说,逆向归纳是失败的。然而,如果先验类是时间一致的,我们建立了经典最优停止理论的推广。为此,我们发展了多先验鞅理论的第一步。我们定义了极大极小鞅,给出了Doob-Meyer分解,并刻画了极大极小鞅。这允许我们将标准的逆向归纳过程扩展到模糊的、时间一致的首选项。价值函数是最小的过程,它是一个极大极小上鞅,支配着收益过程。当当前收益等于价值函数时停止是最优的。接着,我们研究无限视界情况。我们证明了在有限视界情况下,值过程满足相同的向后递归(Bellman方程)。有限视界解收敛于无限视界解。最后,我们对二叉树中时间一致的多先验集进行了完整的刻画。我们解决了两类例子:所谓的独立和不可区分的情况(停车问题)和美国期权的情况(Cox-Ross-Rubinstein模型)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Stopping Under Ambiguity
We consider optimal stopping problems for ambiguity averse decision makers with multiple priors. In general, backward induction fails. If, however, the class of priors is time-consistent, we establish a generalization of the classical theory of optimal stopping. To this end, we develop first steps of a martingale theory for multiple priors. We define minimax (super)martingales, provide a Doob-Meyer decomposition, and characterize minimax martingales. This allows us to extend the standard backward induction procedure to ambiguous, time-consistent preferences. The value function is the smallest process that is a minimax supermartingale and dominates the payoff process. It is optimal to stop when the current payoff is equal to the value function. Moving on, we study the infinite horizon case. We show that the value process satisfies the same backward recursion (Bellman equation) as in the finite horizon case. The finite horizon solutions converge to the infinite horizon solution. Finally, we characterize completely the set of time-consistent multiple priors in the binomial tree. We solve two classes of examples: the so-called independent and indistinguishable case (the parking problem) and the case of American Options (Cox-Ross-Rubinstein model).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信