一个分离QMA和QCMA的分布测试Oracle

A. Natarajan, Chinmay Nirkhe
{"title":"一个分离QMA和QCMA的分布测试Oracle","authors":"A. Natarajan, Chinmay Nirkhe","doi":"10.4230/LIPIcs.CCC.2023.22","DOIUrl":null,"url":null,"abstract":"It is a long-standing open question in quantum complexity theory whether the definition of $\\textit{non-deterministic}$ quantum computation requires quantum witnesses $(\\textsf{QMA})$ or if classical witnesses suffice $(\\textsf{QCMA})$. We make progress on this question by constructing a randomized classical oracle separating the respective computational complexity classes. Previous separations [Aaronson-Kuperberg (CCC'07), Fefferman-Kimmel (MFCS'18)] required a quantum unitary oracle. The separating problem is deciding whether a distribution supported on regular un-directed graphs either consists of multiple connected components (yes instances) or consists of one expanding connected component (no instances) where the graph is given in an adjacency-list format by the oracle. Therefore, the oracle is a distribution over $n$-bit boolean functions.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Distribution Testing Oracle Separating QMA and QCMA\",\"authors\":\"A. Natarajan, Chinmay Nirkhe\",\"doi\":\"10.4230/LIPIcs.CCC.2023.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a long-standing open question in quantum complexity theory whether the definition of $\\\\textit{non-deterministic}$ quantum computation requires quantum witnesses $(\\\\textsf{QMA})$ or if classical witnesses suffice $(\\\\textsf{QCMA})$. We make progress on this question by constructing a randomized classical oracle separating the respective computational complexity classes. Previous separations [Aaronson-Kuperberg (CCC'07), Fefferman-Kimmel (MFCS'18)] required a quantum unitary oracle. The separating problem is deciding whether a distribution supported on regular un-directed graphs either consists of multiple connected components (yes instances) or consists of one expanding connected component (no instances) where the graph is given in an adjacency-list format by the oracle. Therefore, the oracle is a distribution over $n$-bit boolean functions.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2023.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2023.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在量子复杂性理论中,定义$\textit{non-deterministic}$量子计算是否需要量子见证$(\textsf{QMA})$或者经典见证是否足够$(\textsf{QCMA})$是一个长期悬而未决的问题。我们通过构造一个随机的经典oracle来分离各自的计算复杂度类,从而在这个问题上取得进展。以前的分离[Aaronson-Kuperberg (CCC'07), Fefferman-Kimmel (MFCS'18)]需要一个量子酉神谕。分离问题是决定一个正则无向图上支持的分布是由多个连接的组件(有实例)组成,还是由一个扩展的连接组件(没有实例)组成,其中图由oracle以邻接表格式给出。因此,oracle是一个分布在$n$ -bit布尔函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distribution Testing Oracle Separating QMA and QCMA
It is a long-standing open question in quantum complexity theory whether the definition of $\textit{non-deterministic}$ quantum computation requires quantum witnesses $(\textsf{QMA})$ or if classical witnesses suffice $(\textsf{QCMA})$. We make progress on this question by constructing a randomized classical oracle separating the respective computational complexity classes. Previous separations [Aaronson-Kuperberg (CCC'07), Fefferman-Kimmel (MFCS'18)] required a quantum unitary oracle. The separating problem is deciding whether a distribution supported on regular un-directed graphs either consists of multiple connected components (yes instances) or consists of one expanding connected component (no instances) where the graph is given in an adjacency-list format by the oracle. Therefore, the oracle is a distribution over $n$-bit boolean functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信