a-Si光伏组件大面积沉积

L. Boman, A. Bubenzer, J. Meot, J. Schmitt, J. Siéfert
{"title":"a-Si光伏组件大面积沉积","authors":"L. Boman, A. Bubenzer, J. Meot, J. Schmitt, J. Siéfert","doi":"10.1109/PVSC.1990.111893","DOIUrl":null,"url":null,"abstract":"Large-area deposition scaling-up (from 30*30 to 50*60 and 60*100 m/sup 2/) is reported within the context of PV (photovoltaic) industrial development. Production-oriented deposition machine specifications are described, and the various technical solutions are discussed. The selected solutions such as plasma box and plasma etching were investigated in full-scale experiments, and illustrative results are presented. An NF/sub 3/ etching process was developed and optimized in order to match the maintenance requirements of the production machines. Thanks to this cleaning process, a very low point defect density is demonstrated (>1/ft/sup 2/). The thickness uniformity is shown to be better than +or-5%. Material quality is also uniform, which is demonstrated by a mapping of the microcrystalline transition. The plasma box concept is shown to reach very low impurity contamination levels in a classical vacuum machine, comparable to what is obtained in ultrahigh-vacuum technology.<<ETX>>","PeriodicalId":211778,"journal":{"name":"IEEE Conference on Photovoltaic Specialists","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large area deposition of a-Si PV modules\",\"authors\":\"L. Boman, A. Bubenzer, J. Meot, J. Schmitt, J. Siéfert\",\"doi\":\"10.1109/PVSC.1990.111893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-area deposition scaling-up (from 30*30 to 50*60 and 60*100 m/sup 2/) is reported within the context of PV (photovoltaic) industrial development. Production-oriented deposition machine specifications are described, and the various technical solutions are discussed. The selected solutions such as plasma box and plasma etching were investigated in full-scale experiments, and illustrative results are presented. An NF/sub 3/ etching process was developed and optimized in order to match the maintenance requirements of the production machines. Thanks to this cleaning process, a very low point defect density is demonstrated (>1/ft/sup 2/). The thickness uniformity is shown to be better than +or-5%. Material quality is also uniform, which is demonstrated by a mapping of the microcrystalline transition. The plasma box concept is shown to reach very low impurity contamination levels in a classical vacuum machine, comparable to what is obtained in ultrahigh-vacuum technology.<<ETX>>\",\"PeriodicalId\":211778,\"journal\":{\"name\":\"IEEE Conference on Photovoltaic Specialists\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Photovoltaic Specialists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.1990.111893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Photovoltaic Specialists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1990.111893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

据报道,在光伏产业发展的背景下,大面积沉积规模扩大(从30*30到50*60和60*100 m/sup 2/)。介绍了面向生产的沉积机规格,并讨论了各种技术解决方案。在全尺寸实验中对等离子体箱和等离子体刻蚀等解决方案进行了研究,并给出了说明性结果。为了满足生产设备的维护要求,开发并优化了NF/sub - 3/蚀刻工艺。由于这种清洗过程,证明了非常低的点缺陷密度(>1/ft/sup 2/)。厚度均匀性优于+ -5%。材料质量也是均匀的,这可以通过微晶转变的映射来证明。等离子体箱概念在经典真空机中达到非常低的杂质污染水平,可与超高真空技术相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large area deposition of a-Si PV modules
Large-area deposition scaling-up (from 30*30 to 50*60 and 60*100 m/sup 2/) is reported within the context of PV (photovoltaic) industrial development. Production-oriented deposition machine specifications are described, and the various technical solutions are discussed. The selected solutions such as plasma box and plasma etching were investigated in full-scale experiments, and illustrative results are presented. An NF/sub 3/ etching process was developed and optimized in order to match the maintenance requirements of the production machines. Thanks to this cleaning process, a very low point defect density is demonstrated (>1/ft/sup 2/). The thickness uniformity is shown to be better than +or-5%. Material quality is also uniform, which is demonstrated by a mapping of the microcrystalline transition. The plasma box concept is shown to reach very low impurity contamination levels in a classical vacuum machine, comparable to what is obtained in ultrahigh-vacuum technology.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信