一种改进的NSGA-III进化多目标优化算法

Yuan Yuan, Hua Xu, Bo D. Wang
{"title":"一种改进的NSGA-III进化多目标优化算法","authors":"Yuan Yuan, Hua Xu, Bo D. Wang","doi":"10.1145/2576768.2598342","DOIUrl":null,"url":null,"abstract":"Many-objective (four or more objectives) optimization problems pose a great challenge to the classical Pareto-dominance based multi-objective evolutionary algorithms (MOEAs), such as NSGA-II and SPEA2. This is mainly due to the fact that the selection pressure based on Pareto-dominance degrades severely with the number of objectives increasing. Very recently, a reference-point based NSGA-II, referred as NSGA-III, is suggested to deal with many-objective problems, where the maintenance of diversity among population members is aided by supplying and adaptively updating a number of well-spread reference points. However, NSGA-III still relies on Pareto-dominance to push the population towards Pareto front (PF), leaving room for the improvement of its convergence ability. In this paper, an improved NSGA-III procedure, called θ-NSGA-III, is proposed, aiming to better tradeoff the convergence and diversity in many-objective optimization. In θ-NSGA-III, the non-dominated sorting scheme based on the proposed θ-dominance is employed to rank solutions in the environmental selection phase, which ensures both convergence and diversity. Computational experiments have shown that θ-NSGA-III is significantly better than the original NSGA-III and MOEA/D on most instances no matter in convergence and overall performance.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"An improved NSGA-III procedure for evolutionary many-objective optimization\",\"authors\":\"Yuan Yuan, Hua Xu, Bo D. Wang\",\"doi\":\"10.1145/2576768.2598342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many-objective (four or more objectives) optimization problems pose a great challenge to the classical Pareto-dominance based multi-objective evolutionary algorithms (MOEAs), such as NSGA-II and SPEA2. This is mainly due to the fact that the selection pressure based on Pareto-dominance degrades severely with the number of objectives increasing. Very recently, a reference-point based NSGA-II, referred as NSGA-III, is suggested to deal with many-objective problems, where the maintenance of diversity among population members is aided by supplying and adaptively updating a number of well-spread reference points. However, NSGA-III still relies on Pareto-dominance to push the population towards Pareto front (PF), leaving room for the improvement of its convergence ability. In this paper, an improved NSGA-III procedure, called θ-NSGA-III, is proposed, aiming to better tradeoff the convergence and diversity in many-objective optimization. In θ-NSGA-III, the non-dominated sorting scheme based on the proposed θ-dominance is employed to rank solutions in the environmental selection phase, which ensures both convergence and diversity. Computational experiments have shown that θ-NSGA-III is significantly better than the original NSGA-III and MOEA/D on most instances no matter in convergence and overall performance.\",\"PeriodicalId\":123241,\"journal\":{\"name\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2576768.2598342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

摘要

多目标(四个或更多目标)优化问题对经典的基于pareto优势的多目标进化算法(moea)如NSGA-II和SPEA2提出了巨大挑战。这主要是由于基于帕累托优势的选择压力随着目标数量的增加而严重降低。最近,一种基于参考点的NSGA-II(简称NSGA-III)被建议用于处理许多客观问题,其中通过提供和自适应更新一些分布良好的参考点来帮助维持种群成员之间的多样性。然而,NSGA-III仍然依靠帕累托优势将种群推向帕累托前沿(Pareto front, PF),其收敛能力还有待提高。为了更好地权衡多目标优化中的收敛性和多样性,本文提出了一种改进的NSGA-III算法θ-NSGA-III。在θ-NSGA-III中,采用基于提出的θ-优势的非支配排序方案对环境选择阶段的解进行排序,保证了收敛性和多样性。计算实验表明,θ-NSGA-III无论在收敛性还是综合性能上,在大多数情况下都明显优于原NSGA-III和MOEA/D。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved NSGA-III procedure for evolutionary many-objective optimization
Many-objective (four or more objectives) optimization problems pose a great challenge to the classical Pareto-dominance based multi-objective evolutionary algorithms (MOEAs), such as NSGA-II and SPEA2. This is mainly due to the fact that the selection pressure based on Pareto-dominance degrades severely with the number of objectives increasing. Very recently, a reference-point based NSGA-II, referred as NSGA-III, is suggested to deal with many-objective problems, where the maintenance of diversity among population members is aided by supplying and adaptively updating a number of well-spread reference points. However, NSGA-III still relies on Pareto-dominance to push the population towards Pareto front (PF), leaving room for the improvement of its convergence ability. In this paper, an improved NSGA-III procedure, called θ-NSGA-III, is proposed, aiming to better tradeoff the convergence and diversity in many-objective optimization. In θ-NSGA-III, the non-dominated sorting scheme based on the proposed θ-dominance is employed to rank solutions in the environmental selection phase, which ensures both convergence and diversity. Computational experiments have shown that θ-NSGA-III is significantly better than the original NSGA-III and MOEA/D on most instances no matter in convergence and overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信