脉冲噪声抑制递推最小m估计自适应滤波算法的收敛性分析

S. Chan, Yue-Xian Zou
{"title":"脉冲噪声抑制递推最小m估计自适应滤波算法的收敛性分析","authors":"S. Chan, Yue-Xian Zou","doi":"10.1109/ICDSP.2002.1028178","DOIUrl":null,"url":null,"abstract":"We present the convergence analysis of the recursive least M-estimate (RLM) adaptive filter algorithm, which was recently proposed for robust adaptive filtering in the impulse noise environment. The mean and mean squares behaviors of the RLM algorithm, based on the modified Huber M-estimate function (MHF), in the contaminated Gaussian (CG) noise model are analyzed. Close-form expressions are derived. The simulation and theoretical results agree very well with each other and suggest that the RLM algorithm is more robust than the RLS algorithm under the CG noise model.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convergence analysis of the recursive least M-estimate adaptive filtering algorithm for impulse noise suppression\",\"authors\":\"S. Chan, Yue-Xian Zou\",\"doi\":\"10.1109/ICDSP.2002.1028178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the convergence analysis of the recursive least M-estimate (RLM) adaptive filter algorithm, which was recently proposed for robust adaptive filtering in the impulse noise environment. The mean and mean squares behaviors of the RLM algorithm, based on the modified Huber M-estimate function (MHF), in the contaminated Gaussian (CG) noise model are analyzed. Close-form expressions are derived. The simulation and theoretical results agree very well with each other and suggest that the RLM algorithm is more robust than the RLS algorithm under the CG noise model.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文对最近提出的用于脉冲噪声环境下鲁棒自适应滤波的递推最小m估计(RLM)自适应滤波算法进行收敛性分析。分析了基于改进Huber m估计函数(MHF)的RLM算法在污染高斯(CG)噪声模型下的均方和均方行为。导出了封闭形式的表达式。仿真结果与理论结果吻合良好,表明在CG噪声模型下,RLM算法比RLS算法具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of the recursive least M-estimate adaptive filtering algorithm for impulse noise suppression
We present the convergence analysis of the recursive least M-estimate (RLM) adaptive filter algorithm, which was recently proposed for robust adaptive filtering in the impulse noise environment. The mean and mean squares behaviors of the RLM algorithm, based on the modified Huber M-estimate function (MHF), in the contaminated Gaussian (CG) noise model are analyzed. Close-form expressions are derived. The simulation and theoretical results agree very well with each other and suggest that the RLM algorithm is more robust than the RLS algorithm under the CG noise model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信