Sancrey Rodrigues Alves, F. Couto, Luerbio Faria, Sulamita Klein, U. Souza
{"title":"这是一个多项式问题,它是一个多项式问题。","authors":"Sancrey Rodrigues Alves, F. Couto, Luerbio Faria, Sulamita Klein, U. Souza","doi":"10.5753/ETC.2018.3170","DOIUrl":null,"url":null,"abstract":"Um grafo G = (V, E) é bem-coberto se cada conjunto independente maximal de G é máximo. Um grafo G = (V, E) é split se existe uma partição V = (S, K), onde S é um conjunto independente e K é uma clique. Um grafo split bem-coberto é, ao mesmo tempo, split e bem-coberto. Dada uma classe C de grafos, um grafo G = (V, E) é C probe se existe uma partição para V = (N, P ) em probes P e não-probes N , onde N é um conjunto independente e novas arestas podem ser adicionadas entre não-probes de maneira que o grafo resultante permaneça na classe de grafos C. Dizemos que (N, P ) é uma C probe partição para G. O problema C PROBE PARTICIONADO consiste de um grafo de entrada G e uma partição probe V = (N, P ) e a questão: (N, P ) é uma C partição probe? Neste artigo, consideramos C como a classe dos grafos split bem-cobertos, e provamos que o problema C PROBE PARTICIONADO pertence à classe de problemas polinomiais P.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"O problema probe particionado split bem-coberto é polinomial\",\"authors\":\"Sancrey Rodrigues Alves, F. Couto, Luerbio Faria, Sulamita Klein, U. Souza\",\"doi\":\"10.5753/ETC.2018.3170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Um grafo G = (V, E) é bem-coberto se cada conjunto independente maximal de G é máximo. Um grafo G = (V, E) é split se existe uma partição V = (S, K), onde S é um conjunto independente e K é uma clique. Um grafo split bem-coberto é, ao mesmo tempo, split e bem-coberto. Dada uma classe C de grafos, um grafo G = (V, E) é C probe se existe uma partição para V = (N, P ) em probes P e não-probes N , onde N é um conjunto independente e novas arestas podem ser adicionadas entre não-probes de maneira que o grafo resultante permaneça na classe de grafos C. Dizemos que (N, P ) é uma C probe partição para G. O problema C PROBE PARTICIONADO consiste de um grafo de entrada G e uma partição probe V = (N, P ) e a questão: (N, P ) é uma C partição probe? Neste artigo, consideramos C como a classe dos grafos split bem-cobertos, e provamos que o problema C PROBE PARTICIONADO pertence à classe de problemas polinomiais P.\",\"PeriodicalId\":315906,\"journal\":{\"name\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Encontro de Teoria da Computação (ETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ETC.2018.3170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ETC.2018.3170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
O problema probe particionado split bem-coberto é polinomial
Um grafo G = (V, E) é bem-coberto se cada conjunto independente maximal de G é máximo. Um grafo G = (V, E) é split se existe uma partição V = (S, K), onde S é um conjunto independente e K é uma clique. Um grafo split bem-coberto é, ao mesmo tempo, split e bem-coberto. Dada uma classe C de grafos, um grafo G = (V, E) é C probe se existe uma partição para V = (N, P ) em probes P e não-probes N , onde N é um conjunto independente e novas arestas podem ser adicionadas entre não-probes de maneira que o grafo resultante permaneça na classe de grafos C. Dizemos que (N, P ) é uma C probe partição para G. O problema C PROBE PARTICIONADO consiste de um grafo de entrada G e uma partição probe V = (N, P ) e a questão: (N, P ) é uma C partição probe? Neste artigo, consideramos C como a classe dos grafos split bem-cobertos, e provamos que o problema C PROBE PARTICIONADO pertence à classe de problemas polinomiais P.