一种带标签的几何动态时间推理方法

Rui Xu, Z. Li, P. Cui, Shengying Zhu, Ai Gao
{"title":"一种带标签的几何动态时间推理方法","authors":"Rui Xu, Z. Li, P. Cui, Shengying Zhu, Ai Gao","doi":"10.4018/IJSSCI.2016100103","DOIUrl":null,"url":null,"abstract":"Temporal reasoning is one of the cognitive capabilities humans involve in communicating with others and everything appears related because of temporal reference. Therefore, in this paper a geometric dynamic temporal reasoning algorithm is proposed to solve the temporal reasoning problem, especially in autonomous planning and scheduling. This method is based on the representation of actions in a two dimensional coordination system. The main advantage of this method over others is that it uses tags to mark new constraints added into the constraint network, which leads the algorithm to deal with pending constraints rather than all constraints. This characteristic makes the algorithm suitable for temporal reasoning, where variables and constraints are always added dynamically. This algorithm can be used not only in intelligent planning, but also computational intelligence, real-time systems, and etc. The results show the efficiency of our algorithm from four cases simulating the planning and scheduling process.","PeriodicalId":135701,"journal":{"name":"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometric dynamic temporal reasoning method with tags\",\"authors\":\"Rui Xu, Z. Li, P. Cui, Shengying Zhu, Ai Gao\",\"doi\":\"10.4018/IJSSCI.2016100103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal reasoning is one of the cognitive capabilities humans involve in communicating with others and everything appears related because of temporal reference. Therefore, in this paper a geometric dynamic temporal reasoning algorithm is proposed to solve the temporal reasoning problem, especially in autonomous planning and scheduling. This method is based on the representation of actions in a two dimensional coordination system. The main advantage of this method over others is that it uses tags to mark new constraints added into the constraint network, which leads the algorithm to deal with pending constraints rather than all constraints. This characteristic makes the algorithm suitable for temporal reasoning, where variables and constraints are always added dynamically. This algorithm can be used not only in intelligent planning, but also computational intelligence, real-time systems, and etc. The results show the efficiency of our algorithm from four cases simulating the planning and scheduling process.\",\"PeriodicalId\":135701,\"journal\":{\"name\":\"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSSCI.2016100103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2016100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间推理是人类与他人交流时所涉及的一种认知能力,一切事物都因时间参照而显得相关。因此,本文提出了一种几何动态时间推理算法来解决时间推理问题,特别是自主规划和调度中的时间推理问题。该方法基于二维协调系统中动作的表示。与其他方法相比,该方法的主要优点是它使用标记来标记添加到约束网络中的新约束,这使得算法处理未决约束而不是所有约束。这种特性使得该算法适合于动态添加变量和约束的时间推理。该算法不仅可以应用于智能规划,还可以应用于计算智能、实时系统等领域。仿真结果表明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometric dynamic temporal reasoning method with tags
Temporal reasoning is one of the cognitive capabilities humans involve in communicating with others and everything appears related because of temporal reference. Therefore, in this paper a geometric dynamic temporal reasoning algorithm is proposed to solve the temporal reasoning problem, especially in autonomous planning and scheduling. This method is based on the representation of actions in a two dimensional coordination system. The main advantage of this method over others is that it uses tags to mark new constraints added into the constraint network, which leads the algorithm to deal with pending constraints rather than all constraints. This characteristic makes the algorithm suitable for temporal reasoning, where variables and constraints are always added dynamically. This algorithm can be used not only in intelligent planning, but also computational intelligence, real-time systems, and etc. The results show the efficiency of our algorithm from four cases simulating the planning and scheduling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信