循环弯曲作用下方形空心截面的运动硬化模型比较

A. R. Amalia, K. Ochi
{"title":"循环弯曲作用下方形空心截面的运动硬化模型比较","authors":"A. R. Amalia, K. Ochi","doi":"10.32722/arcee.v3i02.4530","DOIUrl":null,"url":null,"abstract":"This study compares the different linearity of the kinematic hardening model of the Square Hollow Section (SHS) under cyclic bending loading. Four specimens of a simple support beam cyclically tested in previous research are listed as hot-rolled, hot-finished, and two cold-formed. Using the bilinear, multilinear, and Chaboche models, each specimen is modeled in kinematic hardening. The variables or node sets for each linearity model are estimated using tensile test data, and Chaboche variables are obtained using the least-square fitting method. Each linearity model for each specimen is built-in FEA using a shell model. The numerical model applied the same cyclic loading history as the previous test. The numerical analysis comparison concluded that Chaboche and the multilinear kinematic model generate the expected result fitted to test hysteresis of cold-formed one and cold-formed 2 SHS, but the bilinear models are not fitted. Moreover, all kinematic models are not fit for the hot-rolled and hot-finished SHS compared to the test hysteresis. So, for hot-rolled and hot-finished SHS, the combined hardening is suggested; there is a possibility it is because of the lower yield ratio that both sections have. Overall, during a cyclic bending analysis of cold-formed SHS, multilinear or Chaboche models are preferable if the data is limited.","PeriodicalId":378971,"journal":{"name":"Applied Research on Civil Engineering and Environment (ARCEE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic Hardening Model Comparison of Square Hollow Section Under Cyclic Bending\",\"authors\":\"A. R. Amalia, K. Ochi\",\"doi\":\"10.32722/arcee.v3i02.4530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study compares the different linearity of the kinematic hardening model of the Square Hollow Section (SHS) under cyclic bending loading. Four specimens of a simple support beam cyclically tested in previous research are listed as hot-rolled, hot-finished, and two cold-formed. Using the bilinear, multilinear, and Chaboche models, each specimen is modeled in kinematic hardening. The variables or node sets for each linearity model are estimated using tensile test data, and Chaboche variables are obtained using the least-square fitting method. Each linearity model for each specimen is built-in FEA using a shell model. The numerical model applied the same cyclic loading history as the previous test. The numerical analysis comparison concluded that Chaboche and the multilinear kinematic model generate the expected result fitted to test hysteresis of cold-formed one and cold-formed 2 SHS, but the bilinear models are not fitted. Moreover, all kinematic models are not fit for the hot-rolled and hot-finished SHS compared to the test hysteresis. So, for hot-rolled and hot-finished SHS, the combined hardening is suggested; there is a possibility it is because of the lower yield ratio that both sections have. Overall, during a cyclic bending analysis of cold-formed SHS, multilinear or Chaboche models are preferable if the data is limited.\",\"PeriodicalId\":378971,\"journal\":{\"name\":\"Applied Research on Civil Engineering and Environment (ARCEE)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Research on Civil Engineering and Environment (ARCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32722/arcee.v3i02.4530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research on Civil Engineering and Environment (ARCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32722/arcee.v3i02.4530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文比较了循环弯曲荷载作用下方形空心截面运动硬化模型的不同线性度。在以往的研究中,一个简支梁的4个试件进行了循环试验,分别是热轧、热加工和两个冷弯。使用双线性、多线性和Chaboche模型,每个试样在运动硬化中建模。利用拉伸试验数据估计各线性模型的变量或节点集,利用最小二乘法拟合得到Chaboche变量。每个样品的线性模型都是使用壳模型内置的有限元分析。数值模型采用了与之前试验相同的循环加载历史。数值分析比较表明,Chaboche和多线性运动学模型均能得到适合于冷弯1和冷弯2 SHS迟滞的拟合结果,但双线性模型不能拟合。此外,与试验迟滞量相比,所有的运动学模型都不适合热轧和热加工SHS。因此,对于热轧和热加工SHS,建议采用联合硬化;有一种可能是因为这两个部分的收益率都较低。总的来说,在冷弯SHS的循环弯曲分析中,如果数据有限,多线性或Chaboche模型更可取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematic Hardening Model Comparison of Square Hollow Section Under Cyclic Bending
This study compares the different linearity of the kinematic hardening model of the Square Hollow Section (SHS) under cyclic bending loading. Four specimens of a simple support beam cyclically tested in previous research are listed as hot-rolled, hot-finished, and two cold-formed. Using the bilinear, multilinear, and Chaboche models, each specimen is modeled in kinematic hardening. The variables or node sets for each linearity model are estimated using tensile test data, and Chaboche variables are obtained using the least-square fitting method. Each linearity model for each specimen is built-in FEA using a shell model. The numerical model applied the same cyclic loading history as the previous test. The numerical analysis comparison concluded that Chaboche and the multilinear kinematic model generate the expected result fitted to test hysteresis of cold-formed one and cold-formed 2 SHS, but the bilinear models are not fitted. Moreover, all kinematic models are not fit for the hot-rolled and hot-finished SHS compared to the test hysteresis. So, for hot-rolled and hot-finished SHS, the combined hardening is suggested; there is a possibility it is because of the lower yield ratio that both sections have. Overall, during a cyclic bending analysis of cold-formed SHS, multilinear or Chaboche models are preferable if the data is limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信