垂直GaN纳米线肖特基势垒二极管的设计考虑

G. Sabui, V. Zubialevich, M. White, P. Pampili, P. Parbrook, M. McLaren, M. Arredondo-Arechavala, Z. Shen
{"title":"垂直GaN纳米线肖特基势垒二极管的设计考虑","authors":"G. Sabui, V. Zubialevich, M. White, P. Pampili, P. Parbrook, M. McLaren, M. Arredondo-Arechavala, Z. Shen","doi":"10.23919/ISPSD.2017.7988917","DOIUrl":null,"url":null,"abstract":"Design considerations for vertical Gallium Nitride (GaN) nanowire Schottky barrier diodes (NWSBDs) for high voltage applications is discussed in this paper. Preliminary quasi-vertical NWSBDs fabricated on a Sapphire substrate show rectifying properties with breakdown voltage of 100 V. The principle of dielectric Reduced SURface Field (RESURF) which is naturally compatible with the NW structure, is utilized to block high voltages (> 600 V) within the fabrication constraints of nano-pillar height and drift doping concentration. Design considerations for the NWSBD is explored through 3D TCAD simulations. TCAD simulations show the NWSBDs can block voltages upward of 700 V with very low on-resistance with optimal design. The measured and simulated results are compared with state of the art GaN devices to provide an understanding of the true potential of the GaN NW architecture as power devices offering high breakdown voltages and low on-state resistance and a reliable device operation, all on a vertical architecture and a non-native substrate.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design considerations of vertical GaN nanowire Schottky barrier diodes\",\"authors\":\"G. Sabui, V. Zubialevich, M. White, P. Pampili, P. Parbrook, M. McLaren, M. Arredondo-Arechavala, Z. Shen\",\"doi\":\"10.23919/ISPSD.2017.7988917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design considerations for vertical Gallium Nitride (GaN) nanowire Schottky barrier diodes (NWSBDs) for high voltage applications is discussed in this paper. Preliminary quasi-vertical NWSBDs fabricated on a Sapphire substrate show rectifying properties with breakdown voltage of 100 V. The principle of dielectric Reduced SURface Field (RESURF) which is naturally compatible with the NW structure, is utilized to block high voltages (> 600 V) within the fabrication constraints of nano-pillar height and drift doping concentration. Design considerations for the NWSBD is explored through 3D TCAD simulations. TCAD simulations show the NWSBDs can block voltages upward of 700 V with very low on-resistance with optimal design. The measured and simulated results are compared with state of the art GaN devices to provide an understanding of the true potential of the GaN NW architecture as power devices offering high breakdown voltages and low on-state resistance and a reliable device operation, all on a vertical architecture and a non-native substrate.\",\"PeriodicalId\":202561,\"journal\":{\"name\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ISPSD.2017.7988917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了用于高压应用的垂直氮化镓(GaN)纳米线肖特基势垒二极管(NWSBDs)的设计考虑。在蓝宝石衬底上制备的准垂直nwsbd在击穿电压为100 V时具有整流性能。利用与NW结构天然兼容的介质还原表面场(RESURF)原理,在纳米柱高度和漂移掺杂浓度的制造约束下,阻挡大于600 V的高压。通过三维TCAD模拟探讨了NWSBD的设计考虑因素。TCAD仿真结果表明,通过优化设计,nwsbd可以以极低的导通电阻阻挡700 V以上的电压。将测量和模拟结果与最先进的GaN器件进行比较,以了解GaN NW架构作为功率器件的真正潜力,这些器件提供高击穿电压和低导通状态电阻,以及可靠的器件运行,所有这些都在垂直架构和非原生衬底上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design considerations of vertical GaN nanowire Schottky barrier diodes
Design considerations for vertical Gallium Nitride (GaN) nanowire Schottky barrier diodes (NWSBDs) for high voltage applications is discussed in this paper. Preliminary quasi-vertical NWSBDs fabricated on a Sapphire substrate show rectifying properties with breakdown voltage of 100 V. The principle of dielectric Reduced SURface Field (RESURF) which is naturally compatible with the NW structure, is utilized to block high voltages (> 600 V) within the fabrication constraints of nano-pillar height and drift doping concentration. Design considerations for the NWSBD is explored through 3D TCAD simulations. TCAD simulations show the NWSBDs can block voltages upward of 700 V with very low on-resistance with optimal design. The measured and simulated results are compared with state of the art GaN devices to provide an understanding of the true potential of the GaN NW architecture as power devices offering high breakdown voltages and low on-state resistance and a reliable device operation, all on a vertical architecture and a non-native substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信