通过高效机载嵌入式计算实现小型无人机的认知自主:一个ORB-SLAM2案例研究

Erqian Tang, Sobhan Niknam, T. Stefanov
{"title":"通过高效机载嵌入式计算实现小型无人机的认知自主:一个ORB-SLAM2案例研究","authors":"Erqian Tang, Sobhan Niknam, T. Stefanov","doi":"10.1109/DSD.2019.00026","DOIUrl":null,"url":null,"abstract":"In this paper, we present a case study which investigates whether/how Simultaneous Localization and Mapping (SLAM), e.g., the ORB-SLAM2 application, can be executed on a small, energy-efficient, multi-processor embedded platform with an ARM big.LITTLE architecture, e.g., the ODROID-XU4 platform, mounted on a small drone with a limited energy budget while meeting real-time performance requirements. More specifically, we model and implement ORB-SLAM2 as a Kahn Process Network (KPN) which exploits pipeline parallelism and enables efficient mapping and execution of ORB-SLAM2 onto ODROID-XU4. Moreover, our KPN model enables the application of generic model transformations to exploit data-level parallelism as well. Then, we propose and implement, on top of the Linux operating system, an environment for efficient execution of applications modeled as KPNs. Finally, we perform a simple design space exploration (DSE) to investigate the trade-off between system performance and power consumption when alternative ORB-SLAM2 KPNs are executed on different configurations of the ODROID-XU4 platform. The obtained results of this DSE clearly show the feasibility of running ORB-SLAM2 on ODROID-XU4 in real time with a limited power budget for a given range of flying time, thereby enabling cognitive autonomy on small drones.","PeriodicalId":217233,"journal":{"name":"2019 22nd Euromicro Conference on Digital System Design (DSD)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enabling Cognitive Autonomy on Small Drones by Efficient On-Board Embedded Computing: An ORB-SLAM2 Case Study\",\"authors\":\"Erqian Tang, Sobhan Niknam, T. Stefanov\",\"doi\":\"10.1109/DSD.2019.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a case study which investigates whether/how Simultaneous Localization and Mapping (SLAM), e.g., the ORB-SLAM2 application, can be executed on a small, energy-efficient, multi-processor embedded platform with an ARM big.LITTLE architecture, e.g., the ODROID-XU4 platform, mounted on a small drone with a limited energy budget while meeting real-time performance requirements. More specifically, we model and implement ORB-SLAM2 as a Kahn Process Network (KPN) which exploits pipeline parallelism and enables efficient mapping and execution of ORB-SLAM2 onto ODROID-XU4. Moreover, our KPN model enables the application of generic model transformations to exploit data-level parallelism as well. Then, we propose and implement, on top of the Linux operating system, an environment for efficient execution of applications modeled as KPNs. Finally, we perform a simple design space exploration (DSE) to investigate the trade-off between system performance and power consumption when alternative ORB-SLAM2 KPNs are executed on different configurations of the ODROID-XU4 platform. The obtained results of this DSE clearly show the feasibility of running ORB-SLAM2 on ODROID-XU4 in real time with a limited power budget for a given range of flying time, thereby enabling cognitive autonomy on small drones.\",\"PeriodicalId\":217233,\"journal\":{\"name\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22nd Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2019.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2019.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个案例研究,调查是否/如何同时定位和映射(SLAM),例如ORB-SLAM2应用程序,可以在一个小型,节能,多处理器嵌入式平台上执行。LITTLE架构,例如ODROID-XU4平台,安装在小型无人机上,能源预算有限,同时满足实时性能要求。更具体地说,我们将ORB-SLAM2建模并实现为Kahn进程网络(KPN),该网络利用管道并行性,使ORB-SLAM2能够有效地映射和执行到ODROID-XU4上。此外,我们的KPN模型还使通用模型转换的应用程序能够利用数据级并行性。然后,我们在Linux操作系统之上提出并实现了一个环境,用于高效地执行建模为kpn的应用程序。最后,我们执行了一个简单的设计空间探索(DSE)来研究在ODROID-XU4平台的不同配置上执行备选ORB-SLAM2 kpn时系统性能和功耗之间的权衡。该DSE获得的结果清楚地表明,在给定的飞行时间范围内,在有限的功率预算下,在ODROID-XU4上实时运行ORB-SLAM2的可行性,从而实现小型无人机的认知自主。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Cognitive Autonomy on Small Drones by Efficient On-Board Embedded Computing: An ORB-SLAM2 Case Study
In this paper, we present a case study which investigates whether/how Simultaneous Localization and Mapping (SLAM), e.g., the ORB-SLAM2 application, can be executed on a small, energy-efficient, multi-processor embedded platform with an ARM big.LITTLE architecture, e.g., the ODROID-XU4 platform, mounted on a small drone with a limited energy budget while meeting real-time performance requirements. More specifically, we model and implement ORB-SLAM2 as a Kahn Process Network (KPN) which exploits pipeline parallelism and enables efficient mapping and execution of ORB-SLAM2 onto ODROID-XU4. Moreover, our KPN model enables the application of generic model transformations to exploit data-level parallelism as well. Then, we propose and implement, on top of the Linux operating system, an environment for efficient execution of applications modeled as KPNs. Finally, we perform a simple design space exploration (DSE) to investigate the trade-off between system performance and power consumption when alternative ORB-SLAM2 KPNs are executed on different configurations of the ODROID-XU4 platform. The obtained results of this DSE clearly show the feasibility of running ORB-SLAM2 on ODROID-XU4 in real time with a limited power budget for a given range of flying time, thereby enabling cognitive autonomy on small drones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信