基于模型的有噪声手写文档表结构检测与识别

Jin Chen, D. Lopresti
{"title":"基于模型的有噪声手写文档表结构检测与识别","authors":"Jin Chen, D. Lopresti","doi":"10.1109/ICFHR.2012.233","DOIUrl":null,"url":null,"abstract":"Tabular structure detection and recognition can be a valuable step in the analysis of unstructured documents. The noisy handwritten documents we try to analyze may contain pre-printed rulings as the substrate, hand-drawn rulings, machine-printed text, handwritten text, and signatures, in addition to the tabular structures which we wish to decompose into basic cells, rows, and columns. Although work has been done to machine-printed documents, noisy handwritten documents may require modified and/or new techniques. In this work, we try to detect and decompose tabular structures into 2-D grids of table cells simultaneously. First, we detect \"key points\" that help determine the physical and logical structure of tables. Then, we make use of the 2-D grid assumption to build grids of key points. Finally, we extract structural features for the Min-Cut/Max-Flow algorithm to recognize tabular structures. Experiments on 22 tables which contain 584 table cells show a cell precision of 100% and a cell recall of 93.3%.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Model-Based Tabular Structure Detection and Recognition in Noisy Handwritten Documents\",\"authors\":\"Jin Chen, D. Lopresti\",\"doi\":\"10.1109/ICFHR.2012.233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tabular structure detection and recognition can be a valuable step in the analysis of unstructured documents. The noisy handwritten documents we try to analyze may contain pre-printed rulings as the substrate, hand-drawn rulings, machine-printed text, handwritten text, and signatures, in addition to the tabular structures which we wish to decompose into basic cells, rows, and columns. Although work has been done to machine-printed documents, noisy handwritten documents may require modified and/or new techniques. In this work, we try to detect and decompose tabular structures into 2-D grids of table cells simultaneously. First, we detect \\\"key points\\\" that help determine the physical and logical structure of tables. Then, we make use of the 2-D grid assumption to build grids of key points. Finally, we extract structural features for the Min-Cut/Max-Flow algorithm to recognize tabular structures. Experiments on 22 tables which contain 584 table cells show a cell precision of 100% and a cell recall of 93.3%.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

表格结构检测和识别在分析非结构化文档时是很有价值的一步。我们试图分析的嘈杂的手写文档可能包含作为基板的预打印规则、手绘规则、机器打印文本、手写文本和签名,以及我们希望分解为基本单元格、行和列的表格结构。虽然已经对机器打印的文档进行了改进,但是嘈杂的手写文档可能需要修改和/或新的技术。在这项工作中,我们试图同时检测并将表格结构分解为表格单元的二维网格。首先,我们检测有助于确定表的物理和逻辑结构的“关键点”。然后,利用二维网格假设建立关键点网格。最后,提取结构特征,用于Min-Cut/Max-Flow算法识别表格结构。在包含584个表单元的22个表上进行的实验表明,该方法的单元精度为100%,单元召回率为93.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Based Tabular Structure Detection and Recognition in Noisy Handwritten Documents
Tabular structure detection and recognition can be a valuable step in the analysis of unstructured documents. The noisy handwritten documents we try to analyze may contain pre-printed rulings as the substrate, hand-drawn rulings, machine-printed text, handwritten text, and signatures, in addition to the tabular structures which we wish to decompose into basic cells, rows, and columns. Although work has been done to machine-printed documents, noisy handwritten documents may require modified and/or new techniques. In this work, we try to detect and decompose tabular structures into 2-D grids of table cells simultaneously. First, we detect "key points" that help determine the physical and logical structure of tables. Then, we make use of the 2-D grid assumption to build grids of key points. Finally, we extract structural features for the Min-Cut/Max-Flow algorithm to recognize tabular structures. Experiments on 22 tables which contain 584 table cells show a cell precision of 100% and a cell recall of 93.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信