水下视觉目标跟踪对抗性实例的积累

Yu Zhang, Jin Li, Chenghao Zhang
{"title":"水下视觉目标跟踪对抗性实例的积累","authors":"Yu Zhang, Jin Li, Chenghao Zhang","doi":"10.1109/ICMA54519.2022.9855996","DOIUrl":null,"url":null,"abstract":"Recent studies show that small perturbations in video frames could misguide the deep learning-based visual object trackers. In this paper, we first attempt to generate an accumulation of adversarial examples for underwater VOT (Visual object tracking). This is the first attempt at underwater VOT attack. The data used are the URPC (Underwater Robot Picking Contest) in 2017 and 2018, and the fish2 subset of the VOT2019(Visual Object Tracking Challenge in 2019). We generate adversarial examples by minimizing the L2 total loss function which we designed. Experiments show that this attack method can achieve an effective attack, which can reduce the success rate of at least 48.6% of the DaSiamRPN(Distractor-aware SiamRPN) trackers.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accumulation of adversarial examples for underwater visual object tracking\",\"authors\":\"Yu Zhang, Jin Li, Chenghao Zhang\",\"doi\":\"10.1109/ICMA54519.2022.9855996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies show that small perturbations in video frames could misguide the deep learning-based visual object trackers. In this paper, we first attempt to generate an accumulation of adversarial examples for underwater VOT (Visual object tracking). This is the first attempt at underwater VOT attack. The data used are the URPC (Underwater Robot Picking Contest) in 2017 and 2018, and the fish2 subset of the VOT2019(Visual Object Tracking Challenge in 2019). We generate adversarial examples by minimizing the L2 total loss function which we designed. Experiments show that this attack method can achieve an effective attack, which can reduce the success rate of at least 48.6% of the DaSiamRPN(Distractor-aware SiamRPN) trackers.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9855996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9855996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,视频帧中的微小扰动可能会误导基于深度学习的视觉目标跟踪器。在本文中,我们首先尝试生成水下VOT(视觉目标跟踪)的对抗示例积累。这是水下VOT攻击的首次尝试。使用的数据是2017年和2018年的URPC(水下机器人拾取大赛)和VOT2019(2019年视觉对象跟踪挑战赛)的fish2子集。我们通过最小化我们设计的L2总损失函数来生成对抗性的例子。实验表明,该攻击方法可以实现有效的攻击,可以将DaSiamRPN(干扰感知SiamRPN)跟踪器的成功率降低至少48.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accumulation of adversarial examples for underwater visual object tracking
Recent studies show that small perturbations in video frames could misguide the deep learning-based visual object trackers. In this paper, we first attempt to generate an accumulation of adversarial examples for underwater VOT (Visual object tracking). This is the first attempt at underwater VOT attack. The data used are the URPC (Underwater Robot Picking Contest) in 2017 and 2018, and the fish2 subset of the VOT2019(Visual Object Tracking Challenge in 2019). We generate adversarial examples by minimizing the L2 total loss function which we designed. Experiments show that this attack method can achieve an effective attack, which can reduce the success rate of at least 48.6% of the DaSiamRPN(Distractor-aware SiamRPN) trackers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信