节能电路设计

A. Antoniadis, Neal Barcelo, Michael Nugent, K. Pruhs, Michele Scquizzato
{"title":"节能电路设计","authors":"A. Antoniadis, Neal Barcelo, Michael Nugent, K. Pruhs, Michele Scquizzato","doi":"10.1145/2554797.2554826","DOIUrl":null,"url":null,"abstract":"We initiate the theoretical investigation of energy-efficient circuit design. We assume that the circuit design specifies the circuit layout as well as the supply voltages for the gates. To obtain maximum energy efficiency, the circuit design must balance the conflicting demands of minimizing the energy used per gate, and minimizing the number of gates in the circuit; If the energy supplied to the gates is small, then functional failures are likely, necessitating a circuit layout that is more fault-tolerant, and thus that has more gates. By leveraging previous work on fault-tolerant circuit design, we show general upper and lower bounds on the amount of energy required by a circuit to compute a given relation. We show that some circuits would be asymptotically more energy efficient if heterogeneous supply voltages were allowed, and show that for some circuits the most energy-efficient supply voltages are homogeneous over all gates.","PeriodicalId":382856,"journal":{"name":"Proceedings of the 5th conference on Innovations in theoretical computer science","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Energy-efficient circuit design\",\"authors\":\"A. Antoniadis, Neal Barcelo, Michael Nugent, K. Pruhs, Michele Scquizzato\",\"doi\":\"10.1145/2554797.2554826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the theoretical investigation of energy-efficient circuit design. We assume that the circuit design specifies the circuit layout as well as the supply voltages for the gates. To obtain maximum energy efficiency, the circuit design must balance the conflicting demands of minimizing the energy used per gate, and minimizing the number of gates in the circuit; If the energy supplied to the gates is small, then functional failures are likely, necessitating a circuit layout that is more fault-tolerant, and thus that has more gates. By leveraging previous work on fault-tolerant circuit design, we show general upper and lower bounds on the amount of energy required by a circuit to compute a given relation. We show that some circuits would be asymptotically more energy efficient if heterogeneous supply voltages were allowed, and show that for some circuits the most energy-efficient supply voltages are homogeneous over all gates.\",\"PeriodicalId\":382856,\"journal\":{\"name\":\"Proceedings of the 5th conference on Innovations in theoretical computer science\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th conference on Innovations in theoretical computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554797.2554826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th conference on Innovations in theoretical computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554797.2554826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们开始了节能电路设计的理论研究。我们假设电路设计指定了电路布局以及栅极的电源电压。为了获得最大的能量效率,电路设计必须在最小化每个栅极所使用的能量和最小化电路中的栅极数量这两个相互冲突的需求之间取得平衡;如果提供给门的能量很小,则可能出现功能故障,因此需要更具容错性的电路布局,因此需要更多的门。通过利用以前在容错电路设计方面的工作,我们展示了电路计算给定关系所需能量的一般上限和下限。我们表明,如果允许异质供电电压,一些电路将逐渐提高能源效率,并表明对于某些电路,最节能的供电电压在所有门上都是均匀的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-efficient circuit design
We initiate the theoretical investigation of energy-efficient circuit design. We assume that the circuit design specifies the circuit layout as well as the supply voltages for the gates. To obtain maximum energy efficiency, the circuit design must balance the conflicting demands of minimizing the energy used per gate, and minimizing the number of gates in the circuit; If the energy supplied to the gates is small, then functional failures are likely, necessitating a circuit layout that is more fault-tolerant, and thus that has more gates. By leveraging previous work on fault-tolerant circuit design, we show general upper and lower bounds on the amount of energy required by a circuit to compute a given relation. We show that some circuits would be asymptotically more energy efficient if heterogeneous supply voltages were allowed, and show that for some circuits the most energy-efficient supply voltages are homogeneous over all gates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信