使用多分类器的临床登革热数据分析和预测:集成技术

Veena Kumari H M, Dr. Suresh D S, Dr. Dhananjaya P E
{"title":"使用多分类器的临床登革热数据分析和预测:集成技术","authors":"Veena Kumari H M, Dr. Suresh D S, Dr. Dhananjaya P E","doi":"10.34257/gjcstdvol22is2pg37","DOIUrl":null,"url":null,"abstract":"Dengue infection is caused by the mosquito Aedes aegypti. According to WHO, 50 to 100 million dengue infections will occur every year. Data-miming techniques will extract information from the raw data. Dengue symptoms are fever, severe headache, body pain, vomiting, diarrhoea, cough, pain in the abdomen, etc. The research work is carried out on real data and the patient data is collected from the Department of General Medicine, PESIMSR, Kuppam, Andrapradesh. Dataset consists of 18 attributes and one target value. Research work has been done on a binary classification to classify dengue positive (DF) and dengue negative (NDF) cases using different ML techniques. The proposed work demonstrates that ensemble techniques of bagging, boosting, and stacking give better results than other models. The Extreme Gradient Boost (XGB), Random Forest by majority voting, and stacking with different meta-classifiers are the ensemble techniques used for binary classification. The dataset is divided into 80% training and 20 % testing dataset. Performance parameters used for the analysis are accuracy, precision, recall, and f1 score, and compared the proposed model with other ML models.","PeriodicalId":340110,"journal":{"name":"Global journal of computer science and technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical Dengue Data Analysis and Prediction using Multiple Classifiers: An Ensemble Techniques\",\"authors\":\"Veena Kumari H M, Dr. Suresh D S, Dr. Dhananjaya P E\",\"doi\":\"10.34257/gjcstdvol22is2pg37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dengue infection is caused by the mosquito Aedes aegypti. According to WHO, 50 to 100 million dengue infections will occur every year. Data-miming techniques will extract information from the raw data. Dengue symptoms are fever, severe headache, body pain, vomiting, diarrhoea, cough, pain in the abdomen, etc. The research work is carried out on real data and the patient data is collected from the Department of General Medicine, PESIMSR, Kuppam, Andrapradesh. Dataset consists of 18 attributes and one target value. Research work has been done on a binary classification to classify dengue positive (DF) and dengue negative (NDF) cases using different ML techniques. The proposed work demonstrates that ensemble techniques of bagging, boosting, and stacking give better results than other models. The Extreme Gradient Boost (XGB), Random Forest by majority voting, and stacking with different meta-classifiers are the ensemble techniques used for binary classification. The dataset is divided into 80% training and 20 % testing dataset. Performance parameters used for the analysis are accuracy, precision, recall, and f1 score, and compared the proposed model with other ML models.\",\"PeriodicalId\":340110,\"journal\":{\"name\":\"Global journal of computer science and technology\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global journal of computer science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/gjcstdvol22is2pg37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global journal of computer science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/gjcstdvol22is2pg37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

登革热感染是由埃及伊蚊引起的。据世卫组织称,每年将发生5000万至1亿登革热感染。数据挖掘技术将从原始数据中提取信息。登革热的症状包括发烧、剧烈头痛、身体疼痛、呕吐、腹泻、咳嗽、腹部疼痛等。研究工作是在真实数据上进行的,患者数据是从安德拉德邦库帕姆PESIMSR普通医学部收集的。数据集由18个属性和一个目标值组成。使用不同的ML技术对登革热阳性(DF)和登革热阴性(NDF)病例进行二元分类研究工作。所提出的工作表明,套袋、提升和堆叠集成技术比其他模型具有更好的结果。极端梯度增强(XGB)、多数投票的随机森林和不同元分类器的堆叠是用于二元分类的集成技术。数据集分为80%的训练数据集和20%的测试数据集。用于分析的性能参数是准确率、精密度、召回率和f1分数,并将提出的模型与其他ML模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinical Dengue Data Analysis and Prediction using Multiple Classifiers: An Ensemble Techniques
Dengue infection is caused by the mosquito Aedes aegypti. According to WHO, 50 to 100 million dengue infections will occur every year. Data-miming techniques will extract information from the raw data. Dengue symptoms are fever, severe headache, body pain, vomiting, diarrhoea, cough, pain in the abdomen, etc. The research work is carried out on real data and the patient data is collected from the Department of General Medicine, PESIMSR, Kuppam, Andrapradesh. Dataset consists of 18 attributes and one target value. Research work has been done on a binary classification to classify dengue positive (DF) and dengue negative (NDF) cases using different ML techniques. The proposed work demonstrates that ensemble techniques of bagging, boosting, and stacking give better results than other models. The Extreme Gradient Boost (XGB), Random Forest by majority voting, and stacking with different meta-classifiers are the ensemble techniques used for binary classification. The dataset is divided into 80% training and 20 % testing dataset. Performance parameters used for the analysis are accuracy, precision, recall, and f1 score, and compared the proposed model with other ML models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信