最佳拉斯维加斯位置敏感数据结构

Thomas Dybdahl Ahle
{"title":"最佳拉斯维加斯位置敏感数据结构","authors":"Thomas Dybdahl Ahle","doi":"10.1109/FOCS.2017.91","DOIUrl":null,"url":null,"abstract":"We show that approximate similarity (near neighbour) search can be solved in high dimensions with performance matching state of the art (data independent) Locality Sensitive Hashing, but with a guarantee of no false negatives. Specifically we give two data structures for common problems. For c-approximate near neighbour in Hamming space, for which we get query time dn^{1/c+o(1)} and space dn^{1+1/c+o(1)} matching that of [Indyk and Motwani, 1998] and answering a long standing open question from [Indyk, 2000a] and [Pagh, 2016] in the affirmative. For (s1, s2)-approximate Jaccard similarity we get query time d^2n^{ρ+o(1)} and space d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)], when sets have equal size, matching the performance of [Pagh and Christiani, 2017].We use space partitions as in classic LSH, but construct these using a combination of brute force, tensoring and splitter functions à la [Naor et al., 1995]. We also show two dimensionality reduction lemmas with 1-sided error.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Optimal Las Vegas Locality Sensitive Data Structures\",\"authors\":\"Thomas Dybdahl Ahle\",\"doi\":\"10.1109/FOCS.2017.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that approximate similarity (near neighbour) search can be solved in high dimensions with performance matching state of the art (data independent) Locality Sensitive Hashing, but with a guarantee of no false negatives. Specifically we give two data structures for common problems. For c-approximate near neighbour in Hamming space, for which we get query time dn^{1/c+o(1)} and space dn^{1+1/c+o(1)} matching that of [Indyk and Motwani, 1998] and answering a long standing open question from [Indyk, 2000a] and [Pagh, 2016] in the affirmative. For (s1, s2)-approximate Jaccard similarity we get query time d^2n^{ρ+o(1)} and space d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)], when sets have equal size, matching the performance of [Pagh and Christiani, 2017].We use space partitions as in classic LSH, but construct these using a combination of brute force, tensoring and splitter functions à la [Naor et al., 1995]. We also show two dimensionality reduction lemmas with 1-sided error.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们表明,近似相似性(近邻)搜索可以在高维中解决,性能匹配最新的(数据独立的)局部敏感哈希,但保证没有假阴性。具体来说,我们给出了两种常见问题的数据结构。对于Hamming空间中的c-近似近邻,我们得到了与[Indyk and Motwani, 1998]匹配的查询时间dn^{1/c+o(1)}和空间dn^{1+1/c+o(1)},肯定地回答了[Indyk, 2000a]和[Pagh, 2016]中一个长期存在的开放问题。对于(s1, s2)-近似Jaccard相似度,当集合大小相等时,我们得到查询时间d^2n^{ρ+o(1)}和空间d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)],性能与[Pagh and Christiani, 2017]相匹配。我们像在经典的LSH中一样使用空间分区,但是使用蛮力、张紧和分割函数的组合来构建它们à[Naor et al., 1995]。我们还展示了具有单边误差的两个降维引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Las Vegas Locality Sensitive Data Structures
We show that approximate similarity (near neighbour) search can be solved in high dimensions with performance matching state of the art (data independent) Locality Sensitive Hashing, but with a guarantee of no false negatives. Specifically we give two data structures for common problems. For c-approximate near neighbour in Hamming space, for which we get query time dn^{1/c+o(1)} and space dn^{1+1/c+o(1)} matching that of [Indyk and Motwani, 1998] and answering a long standing open question from [Indyk, 2000a] and [Pagh, 2016] in the affirmative. For (s1, s2)-approximate Jaccard similarity we get query time d^2n^{ρ+o(1)} and space d^2n^{1+ρ+o(1), ρ= [log (1+s1)/(2s1)]/[log (1+s2)/(2s2)], when sets have equal size, matching the performance of [Pagh and Christiani, 2017].We use space partitions as in classic LSH, but construct these using a combination of brute force, tensoring and splitter functions à la [Naor et al., 1995]. We also show two dimensionality reduction lemmas with 1-sided error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信