{"title":"使用统计自举加速年度分布模拟的代表性日选择","authors":"B. Palmintier, Bruce Bugbee, P. Gotseff","doi":"10.1109/ISGT.2017.8086066","DOIUrl":null,"url":null,"abstract":"Capturing technical and economic impacts of solar photovoltaics (PV) and other distributed energy resources (DERs) on electric distribution systems can require high-time resolution (e.g. 1 minute), long-duration (e.g. 1 year) simulations. However, such simulations can be computationally prohibitive, particularly when including complex control schemes in quasi-steady-state time series (QSTS) simulation. Various approaches have been used in the literature to down select representative time segments (e.g. days), but typically these are best suited for lower time resolutions or consider only a single data stream (e.g. PV production) for selection. We present a statistical approach that combines stratified sampling and bootstrapping to select representative days while also providing a simple method to reassemble annual results. We describe the approach in the context of a recent study with a utility partner. This approach enables much faster QSTS analysis by simulating only a subset of days, while maintaining accurate annual estimates.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Representative day selection using statistical bootstrapping for accelerating annual distribution simulations\",\"authors\":\"B. Palmintier, Bruce Bugbee, P. Gotseff\",\"doi\":\"10.1109/ISGT.2017.8086066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capturing technical and economic impacts of solar photovoltaics (PV) and other distributed energy resources (DERs) on electric distribution systems can require high-time resolution (e.g. 1 minute), long-duration (e.g. 1 year) simulations. However, such simulations can be computationally prohibitive, particularly when including complex control schemes in quasi-steady-state time series (QSTS) simulation. Various approaches have been used in the literature to down select representative time segments (e.g. days), but typically these are best suited for lower time resolutions or consider only a single data stream (e.g. PV production) for selection. We present a statistical approach that combines stratified sampling and bootstrapping to select representative days while also providing a simple method to reassemble annual results. We describe the approach in the context of a recent study with a utility partner. This approach enables much faster QSTS analysis by simulating only a subset of days, while maintaining accurate annual estimates.\",\"PeriodicalId\":296398,\"journal\":{\"name\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2017.8086066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8086066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Representative day selection using statistical bootstrapping for accelerating annual distribution simulations
Capturing technical and economic impacts of solar photovoltaics (PV) and other distributed energy resources (DERs) on electric distribution systems can require high-time resolution (e.g. 1 minute), long-duration (e.g. 1 year) simulations. However, such simulations can be computationally prohibitive, particularly when including complex control schemes in quasi-steady-state time series (QSTS) simulation. Various approaches have been used in the literature to down select representative time segments (e.g. days), but typically these are best suited for lower time resolutions or consider only a single data stream (e.g. PV production) for selection. We present a statistical approach that combines stratified sampling and bootstrapping to select representative days while also providing a simple method to reassemble annual results. We describe the approach in the context of a recent study with a utility partner. This approach enables much faster QSTS analysis by simulating only a subset of days, while maintaining accurate annual estimates.