使用统计自举加速年度分布模拟的代表性日选择

B. Palmintier, Bruce Bugbee, P. Gotseff
{"title":"使用统计自举加速年度分布模拟的代表性日选择","authors":"B. Palmintier, Bruce Bugbee, P. Gotseff","doi":"10.1109/ISGT.2017.8086066","DOIUrl":null,"url":null,"abstract":"Capturing technical and economic impacts of solar photovoltaics (PV) and other distributed energy resources (DERs) on electric distribution systems can require high-time resolution (e.g. 1 minute), long-duration (e.g. 1 year) simulations. However, such simulations can be computationally prohibitive, particularly when including complex control schemes in quasi-steady-state time series (QSTS) simulation. Various approaches have been used in the literature to down select representative time segments (e.g. days), but typically these are best suited for lower time resolutions or consider only a single data stream (e.g. PV production) for selection. We present a statistical approach that combines stratified sampling and bootstrapping to select representative days while also providing a simple method to reassemble annual results. We describe the approach in the context of a recent study with a utility partner. This approach enables much faster QSTS analysis by simulating only a subset of days, while maintaining accurate annual estimates.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Representative day selection using statistical bootstrapping for accelerating annual distribution simulations\",\"authors\":\"B. Palmintier, Bruce Bugbee, P. Gotseff\",\"doi\":\"10.1109/ISGT.2017.8086066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capturing technical and economic impacts of solar photovoltaics (PV) and other distributed energy resources (DERs) on electric distribution systems can require high-time resolution (e.g. 1 minute), long-duration (e.g. 1 year) simulations. However, such simulations can be computationally prohibitive, particularly when including complex control schemes in quasi-steady-state time series (QSTS) simulation. Various approaches have been used in the literature to down select representative time segments (e.g. days), but typically these are best suited for lower time resolutions or consider only a single data stream (e.g. PV production) for selection. We present a statistical approach that combines stratified sampling and bootstrapping to select representative days while also providing a simple method to reassemble annual results. We describe the approach in the context of a recent study with a utility partner. This approach enables much faster QSTS analysis by simulating only a subset of days, while maintaining accurate annual estimates.\",\"PeriodicalId\":296398,\"journal\":{\"name\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2017.8086066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8086066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

捕获太阳能光伏(PV)和其他分布式能源(DERs)对配电系统的技术和经济影响可能需要高时间分辨率(例如1分钟),长时间(例如1年)的模拟。然而,这样的模拟在计算上是令人望而却步的,特别是当在准稳态时间序列(QSTS)模拟中包含复杂的控制方案时。文献中已经使用了各种方法来选择具有代表性的时间段(例如天),但通常这些方法最适合于较低的时间分辨率,或者只考虑单个数据流(例如光伏生产)进行选择。我们提出了一种统计方法,结合分层抽样和自举来选择有代表性的日子,同时也提供了一种简单的方法来重新组装年度结果。我们在最近与公用事业合作伙伴的研究中描述了这种方法。这种方法通过只模拟一个子集的天数来实现更快的QSTS分析,同时保持准确的年度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representative day selection using statistical bootstrapping for accelerating annual distribution simulations
Capturing technical and economic impacts of solar photovoltaics (PV) and other distributed energy resources (DERs) on electric distribution systems can require high-time resolution (e.g. 1 minute), long-duration (e.g. 1 year) simulations. However, such simulations can be computationally prohibitive, particularly when including complex control schemes in quasi-steady-state time series (QSTS) simulation. Various approaches have been used in the literature to down select representative time segments (e.g. days), but typically these are best suited for lower time resolutions or consider only a single data stream (e.g. PV production) for selection. We present a statistical approach that combines stratified sampling and bootstrapping to select representative days while also providing a simple method to reassemble annual results. We describe the approach in the context of a recent study with a utility partner. This approach enables much faster QSTS analysis by simulating only a subset of days, while maintaining accurate annual estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信