参考免费SSIM估计全高清视频内容

M. Ries, M. Slanina, David Mora Garcia
{"title":"参考免费SSIM估计全高清视频内容","authors":"M. Ries, M. Slanina, David Mora Garcia","doi":"10.1109/RADIOELEK.2011.5936447","DOIUrl":null,"url":null,"abstract":"This paper proposes a reference-free video quality estimation method for full high definition video services based on a structural similarity index. The design of our estimator is based on an artificial neural network. To achieve this, the neural network was trained with a set of video statistical parameters extracted from the most representative video contents. Moreover, estimations with neural networks allow higher applicability and require lower processing power as known reference based methods. Finally, the achieved correlation between the calculated and the estimated structural similarity index shows a very good fit.","PeriodicalId":267447,"journal":{"name":"Proceedings of 21st International Conference Radioelektronika 2011","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reference free SSIM estimation for full HD video content\",\"authors\":\"M. Ries, M. Slanina, David Mora Garcia\",\"doi\":\"10.1109/RADIOELEK.2011.5936447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a reference-free video quality estimation method for full high definition video services based on a structural similarity index. The design of our estimator is based on an artificial neural network. To achieve this, the neural network was trained with a set of video statistical parameters extracted from the most representative video contents. Moreover, estimations with neural networks allow higher applicability and require lower processing power as known reference based methods. Finally, the achieved correlation between the calculated and the estimated structural similarity index shows a very good fit.\",\"PeriodicalId\":267447,\"journal\":{\"name\":\"Proceedings of 21st International Conference Radioelektronika 2011\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 21st International Conference Radioelektronika 2011\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADIOELEK.2011.5936447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 21st International Conference Radioelektronika 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2011.5936447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对全高清视频业务,提出了一种基于结构相似度指标的无参考视频质量估计方法。我们的估计器是基于人工神经网络设计的。为了实现这一点,神经网络使用一组从最具代表性的视频内容中提取的视频统计参数进行训练。此外,与已知的基于参考的方法相比,神经网络的估计具有更高的适用性,并且需要更低的处理能力。最后,计算得到的结构相似度指标与估计得到的结构相似度指标具有很好的拟合性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reference free SSIM estimation for full HD video content
This paper proposes a reference-free video quality estimation method for full high definition video services based on a structural similarity index. The design of our estimator is based on an artificial neural network. To achieve this, the neural network was trained with a set of video statistical parameters extracted from the most representative video contents. Moreover, estimations with neural networks allow higher applicability and require lower processing power as known reference based methods. Finally, the achieved correlation between the calculated and the estimated structural similarity index shows a very good fit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信