{"title":"交互式机器学习在城市设计问题中的概念","authors":"A. Chirkin, R. König","doi":"10.1145/2898365.2899795","DOIUrl":null,"url":null,"abstract":"This work presents a concept of interactive machine learning in a human design process. An urban design problem is viewed as a multiple-criteria optimization problem. The outlined feature of an urban design problem is the dependence of a design goal on a context of the problem. We model the design goal as a randomized fitness measure that depends on the context. In terms of multiple-criteria decision analysis (MCDA), the defined measure corresponds to a subjective expected utility of a user. In the first stage of the proposed approach we let the algorithm explore a design space using clustering techniques. The second stage is an interactive design loop; the user makes a proposal, then the program optimizes it, gets the user's feedback and returns back the control over the application interface.","PeriodicalId":424398,"journal":{"name":"Proceedings of the SEACHI 2016 on Smart Cities for Better Living with HCI and UX","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Concept of Interactive Machine Learning in Urban Design Problems\",\"authors\":\"A. Chirkin, R. König\",\"doi\":\"10.1145/2898365.2899795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a concept of interactive machine learning in a human design process. An urban design problem is viewed as a multiple-criteria optimization problem. The outlined feature of an urban design problem is the dependence of a design goal on a context of the problem. We model the design goal as a randomized fitness measure that depends on the context. In terms of multiple-criteria decision analysis (MCDA), the defined measure corresponds to a subjective expected utility of a user. In the first stage of the proposed approach we let the algorithm explore a design space using clustering techniques. The second stage is an interactive design loop; the user makes a proposal, then the program optimizes it, gets the user's feedback and returns back the control over the application interface.\",\"PeriodicalId\":424398,\"journal\":{\"name\":\"Proceedings of the SEACHI 2016 on Smart Cities for Better Living with HCI and UX\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SEACHI 2016 on Smart Cities for Better Living with HCI and UX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2898365.2899795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SEACHI 2016 on Smart Cities for Better Living with HCI and UX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2898365.2899795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concept of Interactive Machine Learning in Urban Design Problems
This work presents a concept of interactive machine learning in a human design process. An urban design problem is viewed as a multiple-criteria optimization problem. The outlined feature of an urban design problem is the dependence of a design goal on a context of the problem. We model the design goal as a randomized fitness measure that depends on the context. In terms of multiple-criteria decision analysis (MCDA), the defined measure corresponds to a subjective expected utility of a user. In the first stage of the proposed approach we let the algorithm explore a design space using clustering techniques. The second stage is an interactive design loop; the user makes a proposal, then the program optimizes it, gets the user's feedback and returns back the control over the application interface.