{"title":"基于功能聚合物的电化学传感和生物传感器","authors":"","doi":"10.36348/sijcms.2023.v06i04.002","DOIUrl":null,"url":null,"abstract":"Functional polymers has great importance in the field of electrochemical sensing and biosensors due to adaptable chemical, electrical, and structural features, functional polymers are a significant class of materials that have been extensively used to create electrochemical biosensors. Additionally, conducting polymers can be made nanostructured, functional group-grafted chemically, or combined with other functional materials, like nanoparticles, to significantly enhance the sensitivity, selectivity, stability, and reproducibility of the biosensor's response to a variety of bioanalytes. Since these biosensors offer benefits such being affordable and having a low detection limit, they are anticipated to play an increasingly important role in providing diagnostic information and monitoring therapy. Because of this, this article begins with a description of the electroanalytical techniques (amperometry, potentiometry, conductometry, impedometry, voltammetry) used in electrochemical biosensors, and then moves on to a review of recent developments in the use of conducting polymers in the identification of bioanalytes that led to the development of enzyme-based biosensors, immunosensors, DNA biosensors, and whole-cell biosensors.","PeriodicalId":230897,"journal":{"name":"Scholars International Journal of Chemistry and Material Sciences","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Sensing and Biosensor Based on Functional Polymers\",\"authors\":\"\",\"doi\":\"10.36348/sijcms.2023.v06i04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional polymers has great importance in the field of electrochemical sensing and biosensors due to adaptable chemical, electrical, and structural features, functional polymers are a significant class of materials that have been extensively used to create electrochemical biosensors. Additionally, conducting polymers can be made nanostructured, functional group-grafted chemically, or combined with other functional materials, like nanoparticles, to significantly enhance the sensitivity, selectivity, stability, and reproducibility of the biosensor's response to a variety of bioanalytes. Since these biosensors offer benefits such being affordable and having a low detection limit, they are anticipated to play an increasingly important role in providing diagnostic information and monitoring therapy. Because of this, this article begins with a description of the electroanalytical techniques (amperometry, potentiometry, conductometry, impedometry, voltammetry) used in electrochemical biosensors, and then moves on to a review of recent developments in the use of conducting polymers in the identification of bioanalytes that led to the development of enzyme-based biosensors, immunosensors, DNA biosensors, and whole-cell biosensors.\",\"PeriodicalId\":230897,\"journal\":{\"name\":\"Scholars International Journal of Chemistry and Material Sciences\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scholars International Journal of Chemistry and Material Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36348/sijcms.2023.v06i04.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholars International Journal of Chemistry and Material Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36348/sijcms.2023.v06i04.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrochemical Sensing and Biosensor Based on Functional Polymers
Functional polymers has great importance in the field of electrochemical sensing and biosensors due to adaptable chemical, electrical, and structural features, functional polymers are a significant class of materials that have been extensively used to create electrochemical biosensors. Additionally, conducting polymers can be made nanostructured, functional group-grafted chemically, or combined with other functional materials, like nanoparticles, to significantly enhance the sensitivity, selectivity, stability, and reproducibility of the biosensor's response to a variety of bioanalytes. Since these biosensors offer benefits such being affordable and having a low detection limit, they are anticipated to play an increasingly important role in providing diagnostic information and monitoring therapy. Because of this, this article begins with a description of the electroanalytical techniques (amperometry, potentiometry, conductometry, impedometry, voltammetry) used in electrochemical biosensors, and then moves on to a review of recent developments in the use of conducting polymers in the identification of bioanalytes that led to the development of enzyme-based biosensors, immunosensors, DNA biosensors, and whole-cell biosensors.