基于多阶LBP和局部多boost学习的真实世界性别识别

Dong Cao, R. He, Man Zhang, Zhenan Sun, T. Tan
{"title":"基于多阶LBP和局部多boost学习的真实世界性别识别","authors":"Dong Cao, R. He, Man Zhang, Zhenan Sun, T. Tan","doi":"10.1109/ISBA.2015.7126350","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for real-world gender recognition, where images are captured under uncontrolled environments with various poses, illuminations and expressions. While a large number of gender recognition methods have been introduced in recent years, most of them describe each image in a single feature space or simple combination of multiple individual spaces, which can not be powerful enough to alleviate the noise in real-world scenarios. To address this, we propose exploring multiple order local binary patterns (MOLBP) as features for learning, and develop a localized multi-boost learning (LMBL) algorithm to combine the different features for classification. Experimental results show that the proposed algorithm outperforms state-of-the-art methods in two real-world datasets.","PeriodicalId":398910,"journal":{"name":"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Real-world gender recognition using multi-order LBP and localized multi-boost learning\",\"authors\":\"Dong Cao, R. He, Man Zhang, Zhenan Sun, T. Tan\",\"doi\":\"10.1109/ISBA.2015.7126350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach for real-world gender recognition, where images are captured under uncontrolled environments with various poses, illuminations and expressions. While a large number of gender recognition methods have been introduced in recent years, most of them describe each image in a single feature space or simple combination of multiple individual spaces, which can not be powerful enough to alleviate the noise in real-world scenarios. To address this, we propose exploring multiple order local binary patterns (MOLBP) as features for learning, and develop a localized multi-boost learning (LMBL) algorithm to combine the different features for classification. Experimental results show that the proposed algorithm outperforms state-of-the-art methods in two real-world datasets.\",\"PeriodicalId\":398910,\"journal\":{\"name\":\"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2015.7126350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2015.7126350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种用于现实世界性别识别的新方法,其中图像在不受控制的环境下拍摄,具有各种姿势,照明和表情。虽然近年来已经引入了大量的性别识别方法,但大多数方法都是在单个特征空间或多个个体空间的简单组合中描述每张图像,这些方法不足以缓解现实场景中的噪声。为了解决这个问题,我们提出探索多阶局部二元模式(MOLBP)作为学习特征,并开发一种局部多增强学习(LMBL)算法来组合不同的特征进行分类。实验结果表明,该算法在两个真实数据集上的性能优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-world gender recognition using multi-order LBP and localized multi-boost learning
This paper presents a new approach for real-world gender recognition, where images are captured under uncontrolled environments with various poses, illuminations and expressions. While a large number of gender recognition methods have been introduced in recent years, most of them describe each image in a single feature space or simple combination of multiple individual spaces, which can not be powerful enough to alleviate the noise in real-world scenarios. To address this, we propose exploring multiple order local binary patterns (MOLBP) as features for learning, and develop a localized multi-boost learning (LMBL) algorithm to combine the different features for classification. Experimental results show that the proposed algorithm outperforms state-of-the-art methods in two real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信