指数跟踪投资组合的拓宽学习

Iuliia Gavriushina, Oliver R. Sampson, M. Berthold, W. Pohlmeier, C. Borgelt
{"title":"指数跟踪投资组合的拓宽学习","authors":"Iuliia Gavriushina, Oliver R. Sampson, M. Berthold, W. Pohlmeier, C. Borgelt","doi":"10.1109/ICMLA.2019.00291","DOIUrl":null,"url":null,"abstract":"Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Widened Learning of Index Tracking Portfolios\",\"authors\":\"Iuliia Gavriushina, Oliver R. Sampson, M. Berthold, W. Pohlmeier, C. Borgelt\",\"doi\":\"10.1109/ICMLA.2019.00291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

指数投资比主动投资策略有优势,因为较少的交易导致较低的费用,产生较高的长期回报。指数跟踪是一种流行的投资策略,它试图找到一个能复制一系列投资工具表现的投资组合。本文从解空间探索的角度考虑索引跟踪。比较了三种搜索空间启发式方法与三种投资组合跟踪误差方法的结合,以选择具有模拟基准指数收益的跟踪投资组合。在实际数据集上进行的实验结果表明,使用多种并行搜索路径的元启发式算法“扩大”比参考启发式算法找到的解更优。这里展示的是在时间序列数据上使用扩展的第一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Widened Learning of Index Tracking Portfolios
Index investing has an advantage over active investment strategies, because less frequent trading results in lower expenses, yielding higher long-term returns. Index tracking is a popular investment strategy that attempts to find a portfolio replicating the performance of a collection of investment vehicles. This paper considers index tracking from the perspective of solution space exploration. Three search space heuristics in combination with three portfolio tracking error methods are compared in order to select a tracking portfolio with returns that mimic a benchmark index. Experimental results conducted on real-world datasets show that Widening, a metaheuristic using diverse parallel search paths, finds superior solutions than those found by the reference heuristics. Presented here are the first results using Widening on time-series data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信