机器学习应用中拓扑特征的超参数优化

Francis C. Motta, J. Harer, Nicholas Leiby, F. Marinozzi, Scott Novotney, G. Rocklin, Jed Singer, D. Strickland, M. Vaughn, Christopher J. Tralie, R. Bedini, F. Bini, G. Bini, Hamed Eramian, Marcio Gameiro, S. Haase, Hugh K. Haddox
{"title":"机器学习应用中拓扑特征的超参数优化","authors":"Francis C. Motta, J. Harer, Nicholas Leiby, F. Marinozzi, Scott Novotney, G. Rocklin, Jed Singer, D. Strickland, M. Vaughn, Christopher J. Tralie, R. Bedini, F. Bini, G. Bini, Hamed Eramian, Marcio Gameiro, S. Haase, Hugh K. Haddox","doi":"10.1109/ICMLA.2019.00185","DOIUrl":null,"url":null,"abstract":"This paper describes a general pipeline for generating optimal vector representations of topological features of data for use with machine learning algorithms. This pipeline can be viewed as a costly black-box function defined over a complex configuration space, each point of which specifies both how features are generated and how predictive models are trained on those features. We propose using state-of-the-art Bayesian optimization algorithms to inform the choice of topological vectorization hyperparameters while simultaneously choosing learning model parameters. We demonstrate the need for and effectiveness of this pipeline using two difficult biological learning problems, and illustrate the nontrivial interactions between topological feature generation and learning model hyperparameters.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hyperparameter Optimization of Topological Features for Machine Learning Applications\",\"authors\":\"Francis C. Motta, J. Harer, Nicholas Leiby, F. Marinozzi, Scott Novotney, G. Rocklin, Jed Singer, D. Strickland, M. Vaughn, Christopher J. Tralie, R. Bedini, F. Bini, G. Bini, Hamed Eramian, Marcio Gameiro, S. Haase, Hugh K. Haddox\",\"doi\":\"10.1109/ICMLA.2019.00185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a general pipeline for generating optimal vector representations of topological features of data for use with machine learning algorithms. This pipeline can be viewed as a costly black-box function defined over a complex configuration space, each point of which specifies both how features are generated and how predictive models are trained on those features. We propose using state-of-the-art Bayesian optimization algorithms to inform the choice of topological vectorization hyperparameters while simultaneously choosing learning model parameters. We demonstrate the need for and effectiveness of this pipeline using two difficult biological learning problems, and illustrate the nontrivial interactions between topological feature generation and learning model hyperparameters.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了一种用于生成用于机器学习算法的数据拓扑特征的最佳向量表示的通用管道。这个管道可以看作是在复杂配置空间上定义的一个昂贵的黑盒函数,它的每个点都指定了如何生成特征以及如何在这些特征上训练预测模型。我们建议使用最先进的贝叶斯优化算法来选择拓扑矢量化超参数,同时选择学习模型参数。我们通过两个困难的生物学习问题证明了这种管道的必要性和有效性,并说明了拓扑特征生成和学习模型超参数之间的重要相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperparameter Optimization of Topological Features for Machine Learning Applications
This paper describes a general pipeline for generating optimal vector representations of topological features of data for use with machine learning algorithms. This pipeline can be viewed as a costly black-box function defined over a complex configuration space, each point of which specifies both how features are generated and how predictive models are trained on those features. We propose using state-of-the-art Bayesian optimization algorithms to inform the choice of topological vectorization hyperparameters while simultaneously choosing learning model parameters. We demonstrate the need for and effectiveness of this pipeline using two difficult biological learning problems, and illustrate the nontrivial interactions between topological feature generation and learning model hyperparameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信