通过累积量和LMS算法进行自适应滤波

Hsing-Hsing Chiang, C. Nikias
{"title":"通过累积量和LMS算法进行自适应滤波","authors":"Hsing-Hsing Chiang, C. Nikias","doi":"10.1109/ICASSP.1988.196882","DOIUrl":null,"url":null,"abstract":"A novel adaptive identification scheme is introduced for a nonGaussian white-noise-driven linear, nonminimum-phase FIR (finite-impulse response) system. The adaptive scheme is based on noncausal autoregressive (AR) modeling of higher-order cumulants of the system output. In particular, the magnitude and phase response estimates at each iteration are expressed in terms of the updated parameters of the noncausal AR model. The set of updated AR parameters is obtained by using the LMS (least-mean-squares) algorithm and by using higher-order cumulants instead of time samples of the output signal. It is demonstrated by means of standard examples that the new adaptive scheme works well and, as expected, outperforms the modified (autocorrelation-based) LMS algorithm for nonminimum-phase system identification.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Adaptive filtering via cumulants and LMS algorithm\",\"authors\":\"Hsing-Hsing Chiang, C. Nikias\",\"doi\":\"10.1109/ICASSP.1988.196882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel adaptive identification scheme is introduced for a nonGaussian white-noise-driven linear, nonminimum-phase FIR (finite-impulse response) system. The adaptive scheme is based on noncausal autoregressive (AR) modeling of higher-order cumulants of the system output. In particular, the magnitude and phase response estimates at each iteration are expressed in terms of the updated parameters of the noncausal AR model. The set of updated AR parameters is obtained by using the LMS (least-mean-squares) algorithm and by using higher-order cumulants instead of time samples of the output signal. It is demonstrated by means of standard examples that the new adaptive scheme works well and, as expected, outperforms the modified (autocorrelation-based) LMS algorithm for nonminimum-phase system identification.<<ETX>>\",\"PeriodicalId\":448544,\"journal\":{\"name\":\"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1988.196882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.196882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

针对非高斯白噪声驱动的线性非最小相位有限脉冲响应系统,提出了一种新的自适应识别方案。该自适应方案基于对系统输出的高阶累积量的非因果自回归(AR)建模。特别是,每次迭代的幅度和相位响应估计都是根据非因果AR模型的更新参数表示的。使用LMS(最小均方)算法和使用高阶累积量代替输出信号的时间样本来获得更新后的AR参数集。通过标准算例证明,该自适应方案效果良好,并如预期的那样优于改进的(基于自相关的)LMS算法用于非最小相位系统辨识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive filtering via cumulants and LMS algorithm
A novel adaptive identification scheme is introduced for a nonGaussian white-noise-driven linear, nonminimum-phase FIR (finite-impulse response) system. The adaptive scheme is based on noncausal autoregressive (AR) modeling of higher-order cumulants of the system output. In particular, the magnitude and phase response estimates at each iteration are expressed in terms of the updated parameters of the noncausal AR model. The set of updated AR parameters is obtained by using the LMS (least-mean-squares) algorithm and by using higher-order cumulants instead of time samples of the output signal. It is demonstrated by means of standard examples that the new adaptive scheme works well and, as expected, outperforms the modified (autocorrelation-based) LMS algorithm for nonminimum-phase system identification.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信