降低模糊邻域聚类算法空间复杂度的研究

C. Atilgan, E. Nasibov
{"title":"降低模糊邻域聚类算法空间复杂度的研究","authors":"C. Atilgan, E. Nasibov","doi":"10.1109/UBMK.2017.8093467","DOIUrl":null,"url":null,"abstract":"Using fuzzy neighborhood relations in density-based clustering, like in Fuzzy Joint Points (FJP) algorithm, yields more robust and autonomous algorithms. Even though the fuzzy neighborhood based clustering methods are proven to be fast enough, such that tens of thousands of data can be handled under a second, the space complexity is still a limiting factor. In this study, a transformed FJP algorithm with low space complexity is proposed.","PeriodicalId":201903,"journal":{"name":"2017 International Conference on Computer Science and Engineering (UBMK)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On reducing space complexity of fuzzy neighborhood based clustering algorithms\",\"authors\":\"C. Atilgan, E. Nasibov\",\"doi\":\"10.1109/UBMK.2017.8093467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using fuzzy neighborhood relations in density-based clustering, like in Fuzzy Joint Points (FJP) algorithm, yields more robust and autonomous algorithms. Even though the fuzzy neighborhood based clustering methods are proven to be fast enough, such that tens of thousands of data can be handled under a second, the space complexity is still a limiting factor. In this study, a transformed FJP algorithm with low space complexity is proposed.\",\"PeriodicalId\":201903,\"journal\":{\"name\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2017.8093467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2017.8093467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基于密度的聚类中使用模糊邻域关系,如模糊结合点(FJP)算法,可以产生更加鲁棒和自治的算法。尽管基于模糊邻域的聚类方法被证明速度足够快,可以在1秒内处理数万个数据,但空间复杂性仍然是一个限制因素。本文提出了一种低空间复杂度的变换FJP算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On reducing space complexity of fuzzy neighborhood based clustering algorithms
Using fuzzy neighborhood relations in density-based clustering, like in Fuzzy Joint Points (FJP) algorithm, yields more robust and autonomous algorithms. Even though the fuzzy neighborhood based clustering methods are proven to be fast enough, such that tens of thousands of data can be handled under a second, the space complexity is still a limiting factor. In this study, a transformed FJP algorithm with low space complexity is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信