{"title":"多智能体系统编队机动控制的全分布式方法","authors":"Zhimin Han, Zhiyun Lin, M. Fu","doi":"10.1109/CDC.2014.7040358","DOIUrl":null,"url":null,"abstract":"This paper studies the formation maneuvering control problem for a network of agents with the objective of achieving a desired group formation shape and a constant over-all group maneuvering velocity. A fully distributed approach is developed to solve the problem. That is, a control law is proposed for each agent in the network, with its parameters capable of being designed in a distributed manner, and is implementable locally via relative sensing and communication with neighbors. Necessary and sufficient conditions regarding a critical control parameter are obtained to guarantee the globally asymptotic convergence of the overall system for both the single-integrator kinematics case and the double-integrator dynamics case.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"470 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A fully distributed approach to formation maneuvering control of multi-agent systems\",\"authors\":\"Zhimin Han, Zhiyun Lin, M. Fu\",\"doi\":\"10.1109/CDC.2014.7040358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the formation maneuvering control problem for a network of agents with the objective of achieving a desired group formation shape and a constant over-all group maneuvering velocity. A fully distributed approach is developed to solve the problem. That is, a control law is proposed for each agent in the network, with its parameters capable of being designed in a distributed manner, and is implementable locally via relative sensing and communication with neighbors. Necessary and sufficient conditions regarding a critical control parameter are obtained to guarantee the globally asymptotic convergence of the overall system for both the single-integrator kinematics case and the double-integrator dynamics case.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"470 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7040358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fully distributed approach to formation maneuvering control of multi-agent systems
This paper studies the formation maneuvering control problem for a network of agents with the objective of achieving a desired group formation shape and a constant over-all group maneuvering velocity. A fully distributed approach is developed to solve the problem. That is, a control law is proposed for each agent in the network, with its parameters capable of being designed in a distributed manner, and is implementable locally via relative sensing and communication with neighbors. Necessary and sufficient conditions regarding a critical control parameter are obtained to guarantee the globally asymptotic convergence of the overall system for both the single-integrator kinematics case and the double-integrator dynamics case.