基于Gan的多域图像转换

Xiaofeng Gu, Xiaofang Li, Yulun Wu, Ping Kuang, Xiang Xu
{"title":"基于Gan的多域图像转换","authors":"Xiaofeng Gu, Xiaofang Li, Yulun Wu, Ping Kuang, Xiang Xu","doi":"10.1109/ICCWAMTIP.2018.8632565","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks can be used to generate clear images, but in different domains of the image conversion, for example, a picture from a man to a woman, or from hair to baldness, many methods use multiple models to transform input images rather than single model, which may cause the artifacts. There is no quantitative and qualitative way to evaluate the experimental results. Based on the idea of Generative Adversarial Networks, this paper can use a single model to convert multiple domains of images. After the conversion is completed, the pre-training is used to classify the images. The experimental results show that the method can realize image conversion between multiple domains and can better evaluate the experimental results.","PeriodicalId":117919,"journal":{"name":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Conversion in Multiple Domains Based on Gan\",\"authors\":\"Xiaofeng Gu, Xiaofang Li, Yulun Wu, Ping Kuang, Xiang Xu\",\"doi\":\"10.1109/ICCWAMTIP.2018.8632565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative Adversarial Networks can be used to generate clear images, but in different domains of the image conversion, for example, a picture from a man to a woman, or from hair to baldness, many methods use multiple models to transform input images rather than single model, which may cause the artifacts. There is no quantitative and qualitative way to evaluate the experimental results. Based on the idea of Generative Adversarial Networks, this paper can use a single model to convert multiple domains of images. After the conversion is completed, the pre-training is used to classify the images. The experimental results show that the method can realize image conversion between multiple domains and can better evaluate the experimental results.\",\"PeriodicalId\":117919,\"journal\":{\"name\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2018.8632565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2018.8632565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成对抗网络可以用来生成清晰的图像,但在图像转换的不同领域,例如,从一个男人到一个女人,或者从头发到秃顶,许多方法使用多个模型来转换输入图像,而不是单一模型,这可能会导致伪像。没有定量和定性的方法来评价实验结果。基于生成对抗网络的思想,本文可以使用一个模型来转换多个图像域。转换完成后,使用预训练对图像进行分类。实验结果表明,该方法能够实现多域间的图像转换,并能较好地评价实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Conversion in Multiple Domains Based on Gan
Generative Adversarial Networks can be used to generate clear images, but in different domains of the image conversion, for example, a picture from a man to a woman, or from hair to baldness, many methods use multiple models to transform input images rather than single model, which may cause the artifacts. There is no quantitative and qualitative way to evaluate the experimental results. Based on the idea of Generative Adversarial Networks, this paper can use a single model to convert multiple domains of images. After the conversion is completed, the pre-training is used to classify the images. The experimental results show that the method can realize image conversion between multiple domains and can better evaluate the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信