操作员5.0测量系统:基于表面肌电信号的学习疲劳识别

L. De Vito, Enrico Picariello, F. Picariello, IOAN TUDOSA, A. Sbaragli, G. P. R. Papini, F. Pilati
{"title":"操作员5.0测量系统:基于表面肌电信号的学习疲劳识别","authors":"L. De Vito, Enrico Picariello, F. Picariello, IOAN TUDOSA, A. Sbaragli, G. P. R. Papini, F. Pilati","doi":"10.1109/MeMeA57477.2023.10171933","DOIUrl":null,"url":null,"abstract":"In this paper, a fatigue recognition system, based on a Machine Learning (ML) algorithm is presented. A wearable device is used to acquire the sEMG signals on a subject performing complex tasks, using tools, and components. Different features are utilized in order to train the ML classifier, namely: amplitude features, frequency features, and used tools and components. In order to verify the effectiveness of the proposed system, various features have been chosen to train the classifier, i.e., an ensemble bagging decision tree, and a preliminary experimental assessment is presented, where the F1-score is calculated. The results show that through the use of all the proposed features and with an optimization phase of the classifier, it is possible to reach an F1-score of 77.7 %.","PeriodicalId":191927,"journal":{"name":"2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement System for Operator 5.0: a Learning Fatigue Recognition based on sEMG Signals\",\"authors\":\"L. De Vito, Enrico Picariello, F. Picariello, IOAN TUDOSA, A. Sbaragli, G. P. R. Papini, F. Pilati\",\"doi\":\"10.1109/MeMeA57477.2023.10171933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fatigue recognition system, based on a Machine Learning (ML) algorithm is presented. A wearable device is used to acquire the sEMG signals on a subject performing complex tasks, using tools, and components. Different features are utilized in order to train the ML classifier, namely: amplitude features, frequency features, and used tools and components. In order to verify the effectiveness of the proposed system, various features have been chosen to train the classifier, i.e., an ensemble bagging decision tree, and a preliminary experimental assessment is presented, where the F1-score is calculated. The results show that through the use of all the proposed features and with an optimization phase of the classifier, it is possible to reach an F1-score of 77.7 %.\",\"PeriodicalId\":191927,\"journal\":{\"name\":\"2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA57477.2023.10171933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA57477.2023.10171933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于机器学习(ML)算法的疲劳识别系统。可穿戴设备用于获取执行复杂任务的受试者的表面肌电信号,使用工具和组件。使用不同的特征来训练ML分类器,即:幅度特征,频率特征以及使用的工具和组件。为了验证所提出系统的有效性,我们选择了各种特征来训练分类器,即一个集合装袋决策树,并进行了初步的实验评估,其中计算了f1分数。结果表明,通过使用所有提出的特征和分类器的优化阶段,有可能达到77.7%的f1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement System for Operator 5.0: a Learning Fatigue Recognition based on sEMG Signals
In this paper, a fatigue recognition system, based on a Machine Learning (ML) algorithm is presented. A wearable device is used to acquire the sEMG signals on a subject performing complex tasks, using tools, and components. Different features are utilized in order to train the ML classifier, namely: amplitude features, frequency features, and used tools and components. In order to verify the effectiveness of the proposed system, various features have been chosen to train the classifier, i.e., an ensemble bagging decision tree, and a preliminary experimental assessment is presented, where the F1-score is calculated. The results show that through the use of all the proposed features and with an optimization phase of the classifier, it is possible to reach an F1-score of 77.7 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信