基于自编码器的海上风电机组导管套基础损伤检测

Felipe González, Á. Encalada-Dávila, C. Tutivén, B. Puruncajas, Y. Vidal, Carlos Benalcazar-Parra
{"title":"基于自编码器的海上风电机组导管套基础损伤检测","authors":"Felipe González, Á. Encalada-Dávila, C. Tutivén, B. Puruncajas, Y. Vidal, Carlos Benalcazar-Parra","doi":"10.12783/shm2021/36264","DOIUrl":null,"url":null,"abstract":"This work addresses the problem of damage detection on offshore wind turbine jacket-type foundations based on deep learning algorithms. The work utilizes data obtained from the vibration response of a lab-scale wind turbine foundation. The main contributions of this manuscript to damage detection are: (i) an autoencoder neural network trained with only healthy data drawing a normality model, and (ii) a threshold in the function of prediction errors to define the bound limits of damage. The methodology is evaluated using real vibration data from the lab-scale wind turbine foundation tagged with different noise levels and damage scenarios. The results of damage detection show a 100% accuracy, demonstrating that the proposed methodology is practical and promising to be employed in this kind of challenges.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DAMAGE DETECTION ON OFFSHORE WIND TURBINE JACKET FOUNDATIONS BASED ON AN AUTOENCODER\",\"authors\":\"Felipe González, Á. Encalada-Dávila, C. Tutivén, B. Puruncajas, Y. Vidal, Carlos Benalcazar-Parra\",\"doi\":\"10.12783/shm2021/36264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses the problem of damage detection on offshore wind turbine jacket-type foundations based on deep learning algorithms. The work utilizes data obtained from the vibration response of a lab-scale wind turbine foundation. The main contributions of this manuscript to damage detection are: (i) an autoencoder neural network trained with only healthy data drawing a normality model, and (ii) a threshold in the function of prediction errors to define the bound limits of damage. The methodology is evaluated using real vibration data from the lab-scale wind turbine foundation tagged with different noise levels and damage scenarios. The results of damage detection show a 100% accuracy, demonstrating that the proposed methodology is practical and promising to be employed in this kind of challenges.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于深度学习算法的海上风力发电机护套型基础损伤检测问题。这项工作利用了从实验室规模的风力涡轮机基础的振动响应中获得的数据。本文对损伤检测的主要贡献是:(i)仅用健康数据训练的自编码器神经网络绘制正态性模型,以及(ii)在预测误差函数中设置阈值以定义损伤的界限。该方法使用来自实验室规模的风力涡轮机基础的真实振动数据进行评估,这些数据带有不同的噪声水平和损坏场景。结果表明,该方法的损伤检测准确率为100%,具有较强的实用性和较好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DAMAGE DETECTION ON OFFSHORE WIND TURBINE JACKET FOUNDATIONS BASED ON AN AUTOENCODER
This work addresses the problem of damage detection on offshore wind turbine jacket-type foundations based on deep learning algorithms. The work utilizes data obtained from the vibration response of a lab-scale wind turbine foundation. The main contributions of this manuscript to damage detection are: (i) an autoencoder neural network trained with only healthy data drawing a normality model, and (ii) a threshold in the function of prediction errors to define the bound limits of damage. The methodology is evaluated using real vibration data from the lab-scale wind turbine foundation tagged with different noise levels and damage scenarios. The results of damage detection show a 100% accuracy, demonstrating that the proposed methodology is practical and promising to be employed in this kind of challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信