遗传算法的进一步改进

Ian Stewart, Wenying Feng, S. Akl
{"title":"遗传算法的进一步改进","authors":"Ian Stewart, Wenying Feng, S. Akl","doi":"10.1109/ITNG.2009.240","DOIUrl":null,"url":null,"abstract":"In this paper, a new genetic algorithm is developed based on a pre-existing implementation. The new algorithm requires less human interaction through the use of dynamically selected weight and acceptance probability parameters. The algorithm is implemented and tested using six benchmark functions. Results show that the new algorithm significantly outperforms other genetic algorithms in less time and with less human interaction.","PeriodicalId":347761,"journal":{"name":"2009 Sixth International Conference on Information Technology: New Generations","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Further Improvement on a Genetic Algorithm\",\"authors\":\"Ian Stewart, Wenying Feng, S. Akl\",\"doi\":\"10.1109/ITNG.2009.240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new genetic algorithm is developed based on a pre-existing implementation. The new algorithm requires less human interaction through the use of dynamically selected weight and acceptance probability parameters. The algorithm is implemented and tested using six benchmark functions. Results show that the new algorithm significantly outperforms other genetic algorithms in less time and with less human interaction.\",\"PeriodicalId\":347761,\"journal\":{\"name\":\"2009 Sixth International Conference on Information Technology: New Generations\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Sixth International Conference on Information Technology: New Generations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNG.2009.240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Conference on Information Technology: New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2009.240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文在已有实现的基础上,提出了一种新的遗传算法。新算法通过使用动态选择的权重和接受概率参数,减少了人工交互。该算法使用六个基准函数进行了实现和测试。结果表明,新算法在更短的时间内和更少的人机交互中显著优于其他遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Further Improvement on a Genetic Algorithm
In this paper, a new genetic algorithm is developed based on a pre-existing implementation. The new algorithm requires less human interaction through the use of dynamically selected weight and acceptance probability parameters. The algorithm is implemented and tested using six benchmark functions. Results show that the new algorithm significantly outperforms other genetic algorithms in less time and with less human interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信