基于SVD聚类和SVM分类的转录组学分析

Hong Cai, Yufeng Wang
{"title":"基于SVD聚类和SVM分类的转录组学分析","authors":"Hong Cai, Yufeng Wang","doi":"10.1109/GENSiPS.2011.6169476","DOIUrl":null,"url":null,"abstract":"The classification performance using support vector machines (SVMs) for transcriptomic analysis can be limited due to the high dimensionality of the data. This limitation is most problematic in the case of small training sets. A general solution is to employ a dimension reduction method before SVM classification. In this paper, we propose a novel singular value decomposition (SVD) based method for dual purposes: firstly, to reduce the dimensionality, and secondly to cluster the transcriptional profiles. The kernel functions of SVM were modified based on the Riemannian geometrical structure which can achieve a better spatial resolution. The proposed approach was applied to the yeast time series microarray dataset and outperformed the traditional SVM kernels.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic analysis using SVD clustering and SVM classification\",\"authors\":\"Hong Cai, Yufeng Wang\",\"doi\":\"10.1109/GENSiPS.2011.6169476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification performance using support vector machines (SVMs) for transcriptomic analysis can be limited due to the high dimensionality of the data. This limitation is most problematic in the case of small training sets. A general solution is to employ a dimension reduction method before SVM classification. In this paper, we propose a novel singular value decomposition (SVD) based method for dual purposes: firstly, to reduce the dimensionality, and secondly to cluster the transcriptional profiles. The kernel functions of SVM were modified based on the Riemannian geometrical structure which can achieve a better spatial resolution. The proposed approach was applied to the yeast time series microarray dataset and outperformed the traditional SVM kernels.\",\"PeriodicalId\":181666,\"journal\":{\"name\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSiPS.2011.6169476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于数据的高维性,使用支持向量机(svm)进行转录组学分析的分类性能可能受到限制。这种限制在小训练集的情况下是最有问题的。一般的解决方案是在SVM分类前采用降维方法。本文提出了一种新的基于奇异值分解(SVD)的方法,用于双重目的:首先,降低维数,其次,对转录谱进行聚类。基于黎曼几何结构对支持向量机核函数进行了改进,获得了更好的空间分辨率。该方法应用于酵母时间序列微阵列数据集,优于传统的支持向量机核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptomic analysis using SVD clustering and SVM classification
The classification performance using support vector machines (SVMs) for transcriptomic analysis can be limited due to the high dimensionality of the data. This limitation is most problematic in the case of small training sets. A general solution is to employ a dimension reduction method before SVM classification. In this paper, we propose a novel singular value decomposition (SVD) based method for dual purposes: firstly, to reduce the dimensionality, and secondly to cluster the transcriptional profiles. The kernel functions of SVM were modified based on the Riemannian geometrical structure which can achieve a better spatial resolution. The proposed approach was applied to the yeast time series microarray dataset and outperformed the traditional SVM kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信