基于迁移学习的深度学习脑肿瘤分类原型

Binju Saju, Laiby Thomas, Fredy Varghese, Arpana Prasad, Neethu Tressa
{"title":"基于迁移学习的深度学习脑肿瘤分类原型","authors":"Binju Saju, Laiby Thomas, Fredy Varghese, Arpana Prasad, Neethu Tressa","doi":"10.1109/AICAPS57044.2023.10074201","DOIUrl":null,"url":null,"abstract":"Accumulation of cells with unimpeded growth is the hallmark for the development of life challenging brain tumor disease. In pre-existing research Machine Learning analytical models are trained on domain specific dataset to achieve goals of an Artificial Intelligence based application in Computer Science for the said disease identification. An ongoing research in the field is presented in this paper where an experimental set of 7038 domain specific images are used to train a model. On experiments conducted on the dataset using six different Machine Learning algorithms the researchers are able to identify Glioma tumor, Meningioma tumors and Pituitary tumor with an accuracy of 96% using RESTNET 5.0 with Transfer Learning Model.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Learning-Based Brain Tumor Classification Prototype Using Transfer Learning\",\"authors\":\"Binju Saju, Laiby Thomas, Fredy Varghese, Arpana Prasad, Neethu Tressa\",\"doi\":\"10.1109/AICAPS57044.2023.10074201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accumulation of cells with unimpeded growth is the hallmark for the development of life challenging brain tumor disease. In pre-existing research Machine Learning analytical models are trained on domain specific dataset to achieve goals of an Artificial Intelligence based application in Computer Science for the said disease identification. An ongoing research in the field is presented in this paper where an experimental set of 7038 domain specific images are used to train a model. On experiments conducted on the dataset using six different Machine Learning algorithms the researchers are able to identify Glioma tumor, Meningioma tumors and Pituitary tumor with an accuracy of 96% using RESTNET 5.0 with Transfer Learning Model.\",\"PeriodicalId\":146698,\"journal\":{\"name\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAPS57044.2023.10074201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无阻碍生长的细胞积累是生命挑战性脑肿瘤疾病发展的标志。在已有的研究中,机器学习分析模型在特定领域的数据集上进行训练,以实现基于人工智能的计算机科学应用的目标,用于上述疾病识别。本文介绍了该领域的一项正在进行的研究,其中使用7038个特定领域图像的实验集来训练模型。在使用六种不同的机器学习算法对数据集进行的实验中,研究人员能够使用带有迁移学习模型的RESTNET 5.0识别胶质瘤、脑膜瘤和垂体瘤,准确率达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Brain Tumor Classification Prototype Using Transfer Learning
Accumulation of cells with unimpeded growth is the hallmark for the development of life challenging brain tumor disease. In pre-existing research Machine Learning analytical models are trained on domain specific dataset to achieve goals of an Artificial Intelligence based application in Computer Science for the said disease identification. An ongoing research in the field is presented in this paper where an experimental set of 7038 domain specific images are used to train a model. On experiments conducted on the dataset using six different Machine Learning algorithms the researchers are able to identify Glioma tumor, Meningioma tumors and Pituitary tumor with an accuracy of 96% using RESTNET 5.0 with Transfer Learning Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信