基于介质电润湿的微流控装置驱动机理仿真与实验验证

Liguo Chen, Xiaowei Xu, Wenyuan He, Lining Sun
{"title":"基于介质电润湿的微流控装置驱动机理仿真与实验验证","authors":"Liguo Chen, Xiaowei Xu, Wenyuan He, Lining Sun","doi":"10.1109/3M-NANO.2013.6737391","DOIUrl":null,"url":null,"abstract":"According to obtain the mechanism of electrowetting-on-dielectric (EWOD), the instantaneous pressure difference inside a droplet was obtained by means of a numerical simulation method in this paper, which was the root reason for EWOD. First, based upon the theory of electrowetting-on-dielectric(EWOD), a geometrical model of EWOD was established in a commercial software using VOF method. Next, deriving that two kinds of fluid which should follow the law of mass conservation and principle of momentum conservation. The experimental results show that the numerical simulation results are in good agreement with the experimental results, In one period of motion, the higher pressure region inside a droplet will keep changing and transferring along with the driving time until a steady state of pressure difference is obtained; besides, the much longer driving time is, the much larger pressure difference will be inside a droplet. The transfer of higher pressure region is the root reason for droplet establishing the velocity field which vividly illustrates how the droplet deforms.","PeriodicalId":120368,"journal":{"name":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation and experimental verification of driving mechanism for a microfluidic device based on electrowetting-on-dielectric\",\"authors\":\"Liguo Chen, Xiaowei Xu, Wenyuan He, Lining Sun\",\"doi\":\"10.1109/3M-NANO.2013.6737391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to obtain the mechanism of electrowetting-on-dielectric (EWOD), the instantaneous pressure difference inside a droplet was obtained by means of a numerical simulation method in this paper, which was the root reason for EWOD. First, based upon the theory of electrowetting-on-dielectric(EWOD), a geometrical model of EWOD was established in a commercial software using VOF method. Next, deriving that two kinds of fluid which should follow the law of mass conservation and principle of momentum conservation. The experimental results show that the numerical simulation results are in good agreement with the experimental results, In one period of motion, the higher pressure region inside a droplet will keep changing and transferring along with the driving time until a steady state of pressure difference is obtained; besides, the much longer driving time is, the much larger pressure difference will be inside a droplet. The transfer of higher pressure region is the root reason for droplet establishing the velocity field which vividly illustrates how the droplet deforms.\",\"PeriodicalId\":120368,\"journal\":{\"name\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2013.6737391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2013.6737391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在获得介质上电润湿机理的基础上,通过数值模拟的方法得到了液滴内部的瞬时压差,这是产生介质上电润湿的根本原因。首先,在介质电润湿理论的基础上,利用VOF方法在商业软件中建立了介质电润湿的几何模型。其次,推导出两种流体应遵循质量守恒定律和动量守恒原理。实验结果表明,数值模拟结果与实验结果吻合较好,在一个运动周期内,液滴内部高压区会随着驱动时间不断变化和转移,直至获得稳定的压差状态;此外,驱动时间越长,液滴内部的压差也越大。高压区的传递是液滴形成速度场的根本原因,它生动地说明了液滴的变形过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation and experimental verification of driving mechanism for a microfluidic device based on electrowetting-on-dielectric
According to obtain the mechanism of electrowetting-on-dielectric (EWOD), the instantaneous pressure difference inside a droplet was obtained by means of a numerical simulation method in this paper, which was the root reason for EWOD. First, based upon the theory of electrowetting-on-dielectric(EWOD), a geometrical model of EWOD was established in a commercial software using VOF method. Next, deriving that two kinds of fluid which should follow the law of mass conservation and principle of momentum conservation. The experimental results show that the numerical simulation results are in good agreement with the experimental results, In one period of motion, the higher pressure region inside a droplet will keep changing and transferring along with the driving time until a steady state of pressure difference is obtained; besides, the much longer driving time is, the much larger pressure difference will be inside a droplet. The transfer of higher pressure region is the root reason for droplet establishing the velocity field which vividly illustrates how the droplet deforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信